1. Which of the following statements holds for every three languages L_{1}, L_{2}, L_{3} ?
(i) $\left(\mathrm{L}_{1} \cap \mathrm{~L}_{2}\right) \mathrm{L}_{3}=\mathrm{L}_{1} \mathrm{~L}_{3} \cap \mathrm{~L}_{2} \mathrm{~L}_{3}$
(ii) $\mathrm{L}_{1} *=\mathrm{L}_{1} * \cdot \mathrm{~L}_{1} *$
(iii) $\left(L_{1} \cup L_{2}\right) \cap L_{3}=L_{1} \cup\left(L_{2} \cap L_{3}\right)$

Please prove your claims.
2. Prove that for every non-empty language $L, \varepsilon \in L$ iff $L \subseteq L L$
3. (i) Prove that if x and y are both strings over the same 1-letter alphabet, then $x y=y x$
(ii) Find strings x, y over the alphabet $\{0,1\}$ such that $x \neq y$, both 0 and 1 appear in x (and y), and yet $\mathrm{xy}=\mathrm{yx}$.
(iii) BONUS: Find a general (as general as you can) condition on strings such that if x, y satisfy this condition then $x y=x y$.
4. (i) Find an infinite set (W of Languages over $\{0,1\}$ so that the following two conditions hold (simultaneously):
a. Every intersection of finitely many members of W is non-empty
b. There is a subset of W whose intersection is empty
(ii) BONUS: Does there exist a set W that in addition to satisfying $\mathrm{a} \& \mathrm{~b}$ above also satisfies:
c. Every infinite subset of W has empty intersection
5. Find what are the languages computed by each of the following automata:

Explain your claims (there's no need to prove them).
6. Describe automata that compute each of the following languages:
(i) $L_{5,3}=\left\{w \in\{0,1\}^{*}:|w|\right.$ is divisible by either 3 or 5$\}$
(ii) For a given string $w \in\{0,1\}^{*}$, the language $\{w\}^{*}$.

