CS 381 — PRELIM1 SOLUTIONS

1. For a word w € {0,1}*, define a language Loup(wy = {zwy | 2,y € {0,1}*}.
That is, Lgyupw) is the set of all strings that contain w as a sub-string.

Problem i:
Prove that for every pair of strings ,y: Lsup(ay) € Lsub(e) N Lsub(y)-

Solution i:

Take any string w € Lgyp(zy)- We must show that w € Lgupa) N Loup(y)- w
is in this intersection if and only if w is in each of the intersected languages.
Thus we must show that w € L) and also that w € Ly, Because
w € Lgyp(zyy we know that w = 2’ xy y' for some z',y" € {0,1}*. We can
show that w € Lgyp(z) because w = z, x y, for 2, = 2’ and y, = yy'. We
can show that w € Ly, because w = x, y y, for x, = 2’ and y, = ¢/
Thus w € Lgyp(e) N Lsupy) and therefore, because we picked w arbitrarily, we
conclude Lsub(wy) - Lsub(a[:) N Lsub(y)'

Problem ii:
Prove that for x = 00 and y = 11, it is not the case that Lyp(ey) 2 Lsub(z) N

Lsub(y)-

Solution ii:

We prove this by constructing a counter example — a word w € Lgyp(z) N
Lgub(y) but w ¢ Lgyp(ay). Take w = 001011. Note w = x9o00ygo for zgp = € €
{0,1}* and yoo = 1011 € {0, 1}*. Therefore w € Lgyp(z=00)- Note w = x1111y11
for 217 = 0010 € {0,1}* and y11 = € € {0,1}*. Therefore w € Lgypy=11). So
W € Lgyp(z) N Lsup(y)- But ... w ¢ Lgypzy—o011) because 0011 is not a substring
of w = 001011. Thus we conclude Lsub(azy) 2 Lsub(w) N Lsub(y)~

Problem iii:

Prove that for every w € {0,1}*, Lgyup(w) is a regular language.
Solution iii:

We know that regular languages are closed under concatenation. We know
that {0,1}* is regular because we can easily construct a DFA that accepts all
strings. We know that {w} is regular for any specific w € {0,1}* because
all finite languages are regular. Finally, observe that the definition of L gyp(w)
is simply the triple concatenation of {0,1}* and {w} and {0,1}*. Therefore,
Lyup(w) 1s regular.

Alternatively, one could directly construct a NFA accepting L () as shown
in figures 1 and 2.

Comments: Those who claimed that the closure of regular languages under
concatenation implied the regularity of L, without identifying the languages
being concatenated did not receive much credit. There were many who claimed
that Lgyp) = {0,1}7{0,1}*{0,1}*, apparently because w could be any string
in {0,1}*. However, as the problem stated, Lsupw) is the set of all strings

(3

—»

Figure 1: NFA accepting Lyp(w), Where w = ¢

0.1 0.1

(3 (3

W1 Wa Whn-1 Wh

—»

Figure 2: NFA accepting Lgyp(w), Where w = wiws...w,, with w; € {0,1} for
1< <n.

over {0,1}* which contain w as a substring; i.e., given any single string x in
{0,1}*, there is a unique corresponding language L (5 consisting of all words
in {0,1}* containing x as a substring.

Important note: It does not suffice to prove that any element of L g,
is in {0,1}*, and then to argue that since L) € {0,1}* and {0,1}* is
regular, Lgypw) must be regular. It is not the case that every subset of
a regular language is regular!! If this were true, every language would be
regular, whereas the truth is that we have proven existence and seen examples
of lanuages that are not regular.

The incorrect reasoning that seems to have been used by those who made this
mistake is that “if language L is regular, all the strings in L must be computable,
so therefore all of the strings in any subset of L are computable.” However, this
does not make sense! Languages are computable, not strings! For a language
L to be computable by DFA M, M must accept all strings in L and
reject all strings not in L.

Problem iv (BONUS):
Prove that for every set K of {0, 1}* strings, the following language is regular:

ﬂ Lsub(w)

weK

Solution iv:

If K is finite, the resulting intersection is regular because each for each
w € K, Lgyp(w) is regular and the intersection of finitely many regular languages
is regular.

If K is infinite... I claim that the above language is regular because it is
the empty. Observe that for all words # € Lgyp(w), it must be the case that
|| > |w|. Thus Lsyup(w) € Ljw where we define L, as the set of all words of
length greater than or equal to |w|. There are a finite number of words of any
specific length, so for K to be infinite there must be no bound on the length
of words in K. Thus if I take any word y, I can show that y ¢ (1, cx Lsub(w)
because we can find a string k € K with length |k| > |w| and thus w ¢ Ly
which in turn means that w ¢ Ly (w)-

We have handled the case when K is infinite and when K is finite and shown
our language to be regular in both cases. Hence, the language is regular.

2. Consider the following NFA N = (Q, %, q0, A, F) = ({a,b, ¢}, {0,1},a, A, {c})
where A is shown by the following NFA diagram (converted from the exam ta-
ble).

0
1 —
—_—

—————

Figure 3: NFA N states and transitions.

Problem i:
Describe in words what language is computed by V.

Solution i:

This machine accepts all strings that end with a 1 followed by an odd number
of 0s. This is clear because the only way to get to state ¢, the accepting state,
is to read a 1 to go from a to b and then to read an odd number of Os (an even
number of Os returns to b). Any leading Os and 1s are ignored because state a
can transition to itself on either a 0 or a 1.

An equally correct way of describing this solution is all strings that end in
10 and are folowed by an even number of Os.

Comments i:

Most people got this problem correct. Of the most common errors, one was
not noting the 1 character which must be present in all strings accepted by
this automaton. The other was merely stating the strings accepted by the au-
tomaton with no supporting explanation to the answer. People that incorrectly

transcribed the automaton from table to graph form lost 2 points/error, but the
rest of their solution was graded with regard to the NFA they had drawn.

Problem ii:
Construct a deterministic automaton M such that L(M) = L(N). (See the
following figure for a drawn solution.)

l 0
(19) = (120) " ((w)
or (@ Y

Figure 4: We have constructed this machine using the power set of states
method. Each state is thus labeled as a set of the states of V. Elements of
the power set that were not needed as states have been omitted.

Grading Comments: You must argue or prove correctness of your DFA. If
you used the subset construction, that’s enough. If not, you must show that
your DFA accepts the correct language. Be sure to indicate start state and
accepting states.

