CS 381 - HW8 Solutions

1. Suppose $L \subseteq \Sigma^{*}, L^{\prime} \subseteq \Delta^{*}$, We need to find a function $\sigma: \Sigma^{*} \rightarrow \Delta^{*}$, such that for all $x \in \Sigma^{*}$:

$$
x \in L \Longleftrightarrow \sigma(x) \in L^{\prime}
$$

Because L^{\prime} is non-trivial, L^{\prime} and L^{\prime} complement are not empty. We can pick some $y_{1} \in L^{\prime}$ and $y_{2} \notin L^{\prime}$. And define σ in this way: for all $x \in \Sigma^{*}$

$$
\begin{aligned}
& x \in L, \sigma(x)=y_{1} \in L^{\prime} \\
& x \notin L, \sigma(x)=y_{2} \notin L^{\prime}
\end{aligned}
$$

Now we only need to show that σ is total and computable. Since L is recursive, there exists some total Turing machine T computing L. Now we can construct a total Turing machine T^{\prime} computing σ in this way: on input x, T^{\prime} simulate T on input x , if T accepts x, T^{\prime} accepts and writes y_{1} on its tape. Or if T rejects x, T^{\prime} rejects and writes y_{2} on its tape. Thus σ is total and computable, which completes the proof.
2. Find a pair of languages L, L^{\prime} for which $L \leq_{m} L^{\prime}$ but $L^{\prime} \not \mathbb{m}_{m} L$.

Solution 2: Take a language $L=\phi \in R$ and $L^{\prime} \in R$ but L^{\prime} non-trivial. By problem 1 we know that $L \leq_{m} L^{\prime}$, however $L^{\prime} \not Z_{m} L$ because L is trivial.
3. The claim is False. Prove by counterexample: Let $A=H P, B=F I N$, as defined in Kozen p.241. We have $A \leq_{m} B$ since $H P \leq_{m} F I N$. Now if the statement is true, then $\sim B \leq_{m} \sim A$ or equivalently $\sim F I N \leq_{m} H P$. But $\sim F I N$ is harder than $\sim H P$ which is in turn harder than $H P$. Thus we reach a contradiction.

