2(i). Let L be a language defined by $0(0+1)^{*}$. Let $(x, y) \in R$ iff $x \in L$ and $y \in$ L. Claim: R is not left invariant, but is right invariant.
R is not left invariant. Consider $\mathrm{x}=00, \mathrm{y}=01$. Both x, y in L , therefore (x, y) in R . Let $\mathrm{z}=1 \in \Sigma^{*}$. Then neither zx , nor zy are in L. Therefore (zx, zy) not in R . Therefore, R is not left invariant.
R is right invariant. if $(\mathrm{x}, \mathrm{y}) \in \mathrm{R}, \mathrm{x}, \mathrm{y} \in \mathrm{L}$. Therefore we can represent $\mathrm{x}=$ $0 x^{\prime}, \mathrm{y}=0 \mathrm{y}^{\prime}$ where $\mathrm{x}^{\prime}, \mathrm{y}^{\prime} \in \Sigma^{*}$. Then for any $\mathrm{z} \in \Sigma^{*}, \mathrm{xz}=0 \mathrm{x}^{\prime} \mathrm{z}=0 \mathrm{z}^{\prime}, \mathrm{yz}=0 \mathrm{y}^{\prime} \mathrm{z}$ $=0 \mathrm{z}$ ". Therefore $\mathrm{xz}, \mathrm{yz} \in \mathrm{R}$ for any z . Therefore R is right invariant.

2(ii). Let L be a language defined by $(0+1)^{*} 0$. Let $(x, y) \in R$ iff $x \in L$ and $\mathrm{y} \in \mathrm{L}$. Claim: R is not right invariant, but is left invariant.
R is not right invariant. Consider $\mathrm{x}=00, \mathrm{y}=10$. Both x, y in L , therefore (x, y) in R . Let $\mathrm{z}=1 \in \Sigma^{*}$. Then neither xz , nor yz are in L. Therefore (xz, yz) not in R . Therefore, R is not right invariant.
R is right invariant. if $(\mathrm{x}, \mathrm{y}) \in \mathrm{R}, \mathrm{x}, \mathrm{y} \in \mathrm{L}$. Therefore we can represent $\mathrm{x}=$ $x^{\prime} 0, y=y^{\prime} 0$ where $x^{\prime}, y^{\prime} \in \Sigma^{*}$. Then for any $z \in \Sigma^{*}, z x=z^{\prime} 0=z^{\prime} 0, y z=y^{\prime} 0$ $=\mathrm{z} " 0$. Therefore $\mathrm{zx}, \mathrm{zy} \in \mathrm{R}$ for any z . Therefore R is left invariant.

2(iii) Let L be a language defined by $(0+1)^{*} 0(0+1)^{*}$. Let $(x, y) \in R$ iff x $\in \mathrm{L}$ and $\mathrm{y} \in \mathrm{L}$. Claim: R is both left and right invariant.
R is left and right invariant. if $(\mathrm{x}, \mathrm{y}) \in \mathrm{R}, \mathrm{x}, \mathrm{y} \in \mathrm{L}$. Therefore we c an represent $x=x^{\prime} 0 x^{\prime \prime}, y=y^{\prime} 0 y^{\prime \prime}$ where $x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime} \in \Sigma^{*}$. Then for any $z, w \in$ $\Sigma^{*}, \mathrm{zxw}=\mathrm{zx} x^{\prime} 0 \mathrm{x}^{\prime \prime} \mathrm{w}=\mathrm{z}^{\prime} 0 \mathrm{w}^{\prime}, \mathrm{zyw}=\mathrm{zy}{ }^{\prime} 0 \mathrm{y}^{\prime \prime} \mathrm{w}=\mathrm{z}^{\prime \prime} 0 \mathrm{w} "$. Therefore $\mathrm{zxw}, \mathrm{zyw} \in \mathrm{R}$ for any z, z^{\prime}. Therefore R is both left and right invariant.
3) Find $\mathrm{L}(\mathrm{G})$ for the following grammar: $\mathrm{G}=(\{\mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{A})$, where $\mathrm{P}=\{\mathrm{A} \rightarrow \mathrm{aBb}, \mathrm{B} \rightarrow \mathrm{bB}, \mathrm{B} \rightarrow \epsilon\}$. Prove your claim.

Claim: $\mathrm{L}(\mathrm{G})=\left\{b^{n} a \mid n \in N, n>0\right\}$, let $\mathrm{M}=\left\{b^{n} a \mid n \in N, n>0\right\}$
Proof.
$\mathrm{L}(\mathrm{G}) \subseteq \mathrm{M}$.
I will show: $B \rightarrow^{*} x \Rightarrow x=b^{n}$, for some $\mathrm{n} \in \mathrm{N}$. We proceed by induction on the length of the G-derivation of x .
base case: $B \rightarrow x, x=\epsilon=b^{0}$
i.h.: $\quad B \rightarrow^{k} x \Rightarrow x=b^{k}$
if $B \rightarrow{ }^{k+1} x$, the derivation must be in this form: $\mathrm{B} \rightarrow \mathrm{bB} \rightarrow{ }^{k} \mathrm{x}$, then x can be written is this form: $\mathrm{x}=\mathrm{by}$ and $\mathrm{B} \rightarrow^{k} \mathrm{y}$. By induction hypothesis, $\mathrm{y}=b^{k}$, thus $\mathrm{x}=b^{k+1}$.
for all $x \in L(G), A \rightarrow{ }^{*} x$, the derivation must be like: $A \rightarrow b B a \rightarrow{ }^{*} x$, then x must be this form: $\mathrm{x}=$ bya and $\mathrm{B} \rightarrow^{*} \mathrm{y}$. As we have proved, $\mathrm{y}=b^{n}$ for some $\mathrm{n} \in \mathrm{N}$, thus $\mathrm{x}=b^{n+1} a \in \mathrm{M}$.
$\mathrm{M} \subseteq \mathrm{L}(\mathrm{G})$.
for all $\mathrm{x} \in \mathrm{M}, \mathrm{x}=b^{n} a$. We proceed by induction on n .
base case: $\mathrm{n}=1, \mathrm{x}=\mathrm{ba}, \mathrm{A} \rightarrow \mathrm{bBa} \rightarrow \mathrm{ba}$.
i.h.: if $\mathrm{x}=b^{k} a, \mathrm{~A} \rightarrow{ }^{*} \mathrm{x}$
for $\mathrm{x}=b^{k+1}$. by induction hypothesis, $\mathrm{A} \rightarrow \mathrm{bBa} \rightarrow^{*} b^{k} a$, thus we have

$$
\mathrm{A} \rightarrow \mathrm{bBa} \rightarrow \mathrm{~b}(\mathrm{bBa}) \rightarrow^{*} b\left(b^{k} a\right)=b^{k+1} a .
$$

