2(i). Let L be a language defined by $0(0+1)^*$. Let $(x,y) \in R$ iff $x \in L$ and $y \in L$. Claim: R is not left invariant, but is right invariant.

R is not left invariant. Consider x=00, y=01. Both x,y in L, therefore (x,y) in R. Let $z=1\in \Sigma^*$. Then neither zx, nor zy are in L. Therefore (zx,zy) not in R. Therefore, R is not left invariant.

R is right invariant. if $(x,y) \in R$, $x, y \in L$. Therefore we can represent x = 0x', y = 0y' where $x',y' \in \Sigma^*$. Then for any $z \in \Sigma^*$, xz = 0x'z = 0z', yz = 0y'z = 0z''. Therefore xz, $yz \in R$ for any z. Therefore R is right invariant.

2(ii). Let L be a language defined by $(0+1)^*0$. Let $(x,y) \in R$ iff $x \in L$ and $y \in L$. Claim: R is not right invariant, but is left invariant.

R is not right invariant. Consider x=00, y=10. Both x,y in L, therefore (x,y) in R. Let $z=1 \in \Sigma^*$. Then neither xz, nor yz are in L. Therefore (xz, yz) not in R. Therefore, R is not right invariant.

R is right invariant. if $(x,y) \in R$, $x, y \in L$. Therefore we can represent x = x'0, y = y'0 where $x',y' \in \Sigma^*$. Then for any $z \in \Sigma^*$, zx = zx'0 = z'0, yz = zy'0 = z''0. Therefore zx, $zy \in R$ for any z. Therefore zx is left invariant.

2(iii) Let L be a language defined by (0+1)*0(0+1)*. Let $(x,y) \in R$ iff $x \in L$ and $y \in L$. Claim: R is both left and right invariant.

R is left and right invariant. if $(x,y) \in R$, $x, y \in L$. Therefore we c an represent x = x'0x'', y = y'0y'' where x', x'', y', $y'' \in \Sigma^*$. Then for any $z, w \in \Sigma^*$, zxw = zx'0x''w = z'0w', zyw = zy'0y''w = z''0w''. Therefore zxw, $zyw \in R$ for any z, z'. Therefore R is both left and right invariant.

3) Find L(G) for the following grammar: $G = (\{A, B\}, \{a, b\}, P, A)$, where $P = \{A \rightarrow aBb, B \rightarrow bB, B \rightarrow \epsilon\}$. Prove your claim.

Claim: L(G)= $\{b^na|n\in N, n>0\}$, let M= $\{b^na|n\in N, n>0\}$ Proof.

 $L(G) \subseteq M$.

I will show: $B \to^* x \Rightarrow x = b^n$, for some $n \in \mathbb{N}$. We proceed by induction on the length of the G-derivation of x.

base case: $B \to x, x = \epsilon = b^0$ i.h.: $B \to^k x \Rightarrow x = b^k$

if $B \to^{k+1} x$, the derivation must be in this form: $B \to bB \to^k x$, then x can be written is this form: x=by and $B \to^k y$. By induction hypothesis, $y=b^k$, thus $x=b^{k+1}$.

for all x \in L(G), A \rightarrow *x, the derivation must be like: A \rightarrow bBa \rightarrow *x, then x must be this form: x=bya and B \rightarrow *y. As we have proved, y= b^n for some n \in N, thus x= $b^{n+1}a\in$ M.

 $M \subseteq L(G)$.

for all $x \in M$, $x=b^n a$. We proceed by induction on n.

base case: n=1, x=ba, $A \rightarrow bBa \rightarrow ba$.

i.h.: if $x=b^ka$, $A \rightarrow^* x$

for $x=b^{k+1}$. by induction hypothesis, $A \rightarrow bBa \rightarrow^* b^k a$, thus we have

$$A \rightarrow bBa \rightarrow b(bBa) \rightarrow^* b(b^k a) = b^{k+1} a.$$