CS 381 HW 4

Due Friday October 19th 2001

1) Let $M=\left(Q, \Sigma, q_{0}, \delta, F\right)$ be a DFA, and $k \in \mathbb{N}$. Define a relation E_{k} over Q as follows:

$$
\begin{gathered}
(p, q) \in E_{k}\left(\text { i.e. } p \sim_{E_{k}} q\right) \text { if for every } z \in \Sigma^{*} \text { with }|z|>k, \\
\hat{\delta}(p, z) \in F \Leftrightarrow \hat{\delta}(q, z) \in F .
\end{gathered}
$$

(i) Prove that E_{k} is an equivalence relation (i.e., that it is reflexive, transitive, and symmetric).
(ii) Describe the equivalence classes of E_{0}.
(iii) Prove, for all $p, q \in Q$, that if $p \sim_{E_{k}} q$ then $p \sim_{E_{k-1}} q$.
(iv) Prove that

$$
\begin{gathered}
p \sim_{E_{k+1}} q \Longleftrightarrow \\
p \sim_{E_{k}} q \text { and } \forall \sigma \in \Sigma, \delta(p, \sigma) \sim_{E_{k}} \delta(q, \sigma)
\end{gathered}
$$

2) Recall that a relation R over Σ^{*} is called right-invariant if $\forall w, w^{\prime}, z \in \Sigma^{*}$, if $\left(w, w^{\prime}\right) \in R$, then $\left(w z, w^{\prime} z\right) \in R$. Similarly, we say that R is left-invariant if $\forall w, w^{\prime} z, \in \Sigma^{*}$, if $\left(w, w^{\prime}\right) \in R$, then $\left(z w, z w^{\prime}\right) \in R$.
(i) Find a relation R over $\{0,1\}^{*}$ that is right-invariant but not leftinvariant. Prove it!
(ii) Find a relation R over $\{0,1\}^{*}$ that is left-invariant but not rightinvariant. Prove it!
(iii) Find a non-trivial relation over $\{0,1\}^{*}$ that is both left-invariant and right-invariant. Prove it!
3) Find $L(G)$ for the following grammar: $G=(\{A, B\},\{a, b\}, P, A)$, where $P=\{A \rightarrow b B a, B \rightarrow b B, B \rightarrow \varepsilon\}$. Prove your claim.
4) For each of the following languages L, find a context-free grammar such that $L(G)=L$. Prove it.
(i) $L=\left\{w \in\{0,1\}^{*} \mid \#_{0}(w)=\#_{1}(w)\right\}$
(ii) $L=\left\{a^{i} b^{j} \mid i=3 j+2\right\}$
