CS 381 - HW3 Solutions 1,3,4

1i. Prove that the family of non-regular languages is closed under complementation.

Proof:

Suppose not. Then we can find some irregular L such that L^{C} is regular. But we know regular languages to be closed under complementation, which means $\left(L^{C}\right)^{C}=L$ must be regular. This is a contradiction, and thus irregular languages must be closed under complementation.

1ii. Show that the family of non-regular languages is not closed under the union operation.

Proof:

We know some irregular languages exist, so lets take any irregular $L . L^{C}$ is also irregular from part $i . L \cup L^{C}=\Sigma^{*}$, which is regular. Thus irregular languages are not closed under union.

1iii. Prove that there is a family W of infinitely many non-regular languages such that $\bigcup\{L \mid L \in W\}$ is regular.

Proof:
We know that infinitely many irregular languages exist. Take W to be any infinite set of irregular languages, making sure W contains some language L and its complement L^{C}. The infinite union is Σ^{*}, which is regular.
3. For a word $w=o_{1} \ldots o_{n}$, let \bar{w} be the reverse word $\bar{w}=o_{n} \ldots o_{1}$. Prove that $L=\left\{w \bar{w} \mid w \in\{0,1\}^{*}\right\}$ is not a regular language.

Proof:

Lets use the pumping lemma / demon game. The demon gives us some n. We reply with word $x=0^{n+1} 110^{n+1}$ where clearly $|x|>n$ and also $x \in L$. The demon now partitions w into parts $x y z=w$ such that $|x y| \leq n+1$ and $|y| \geq 1$. We must show that regardless of the demons partitioning, the string w cannot be pumped. That is, we must find an $i \in \mathbb{N}$ such that $x y^{i} z \notin L$. Because of our clever choice of w, this is fairly easy. Any $x y$ the demon picks can contain only 0 s because the first $n+1$ digits of w are 0 . Because y has non-zero length, we know $y=0^{j}$ for some $j \geq 1$. Lets set $i=0$ and $x y^{i} z=0^{n+1-j} 110^{n+1}$ which clearly is not in L. Therefore, L cannot be pumped. L is irregular.
4. Prove that $L=\left\{0^{k} 1^{n} 0^{n} \mid k, n>0\right\} \cup\left\{1^{i} 0^{j} \mid i, j \geq 0\right\}$ satisfies the pumping lemma.

Proof:

Lets take $n=0$ and show that any string $w \in L, w \neq \epsilon$ can be pumped. If $w \in L$ either $w=0^{k} 1^{n} 0^{n} k, n>0$ or $w=1^{i} 0^{j} \quad i, j \geq 0$. In the first case, choose
$x=\epsilon, y=0, z=0^{k-1} 1^{n} 0^{n} .|x y|=1 \leq n+1=1$ and we can pump because $x y^{i} z=0^{i+k-1} 1^{n} 0^{n}$ and either $i+k-1>0$ and we are of the form $0^{k} 1^{n} 0^{n} k, n>0$ or $i+k-1=0$ and we are of the form $1^{i} 0^{j} i, j \geq 0$. In the second case either $i>0$ or $j>0$ because $|w| \geq 1$. If $i>0$ choose $x=\epsilon, y=0, z=0^{i-1} 1^{j}$ wne we can clearly pump. If $i=0$ then $j>0$ so choose $x=\epsilon, y=1, z=1^{j-1}$ and once again we can easily pump. Thus L satisfies the pumping lemma.

