CS 381 - HW3 SOLUTIONS 1,3,4

1i. Prove that the family of non-regular languages is closed under complementation.

Proof:

Suppose not. Then we can find some irregular L such that L^C is regular. But we know regular languages to be closed under complementation, which means $(L^C)^C = L$ must be regular. This is a contradiction, and thus irregular languages must be closed under complementation.

1ii. Show that the family of non-regular languages is not closed under the union operation.

Proof:

We know some irregular languages exist, so lets take any irregular L. L^C is also irregular from part i. $L \cup L^C = \Sigma^*$, which is regular. Thus irregular languages are not closed under union.

1iii. Prove that there is a family W of infinitely many non-regular languages such that $\bigcup \{L | L \in W\}$ is regular.

Proof:

We know that infinitely many irregular languages exist. Take W to be any infinite set of irregular languages, making sure W contains some language L and its complement L^C . The infinite union is Σ^* , which is regular.

3. For a word $w = o_1 \dots o_n$, let \overline{w} be the reverse word $\overline{w} = o_n \dots o_1$. Prove that $L = \{w\overline{w}|w \in \{0,1\}^*\}$ is not a regular language.

Proof:

Lets use the pumping lemma / demon game. The demon gives us some n. We reply with word $x=0^{n+1}110^{n+1}$ where clearly |x|>n and also $x\in L$. The demon now partitions w into parts xyz=w such that $|xy|\leq n+1$ and $|y|\geq 1$. We must show that regardless of the demons partitioning, the string w cannot be pumped. That is, we must find an $i\in\mathbb{N}$ such that $xy^iz\notin L$. Because of our clever choice of w, this is fairly easy. Any xy the demon picks can contain only 0s because the first n+1 digits of w are 0. Because y has non-zero length, we know $y=0^j$ for some $j\geq 1$. Lets set i=0 and $xy^iz=0^{n+1-j}110^{n+1}$ which clearly is not in L. Therefore, L cannot be pumped. L is irregular.

4. Prove that $L = \{0^k 1^n 0^n \mid k, n > 0\} \cup \{1^i 0^j | i, j \ge 0\}$ satisfies the pumping lemma.

Proof:

Lets take n=0 and show that any string $w \in L, w \neq \epsilon$ can be pumped. If $w \in L$ either $w = 0^k 1^n 0^n$ k, n > 0 or $w = 1^i 0^j$ $i, j \ge 0$. In the first case, choose

 $x=\epsilon,y=0,z=0^{k-1}1^n0^n$. $|xy|=1\leq n+1=1$ and we can pump because $xy^iz=0^{i+k-1}1^n0^n$ and either i+k-1>0 and we are of the form $0^k1^n0^n$ k,n>0 or i+k-1=0 and we are of the form 1^i0^j $i,j\geq 0$. In the second case either i>0 or j>0 because $|w|\geq 1$. If i>0 choose $x=\epsilon,y=0,z=0^{i-1}1^j$ when we can clearly pump. If i=0 then j>0 so choose $x=\epsilon,y=1,z=1^{j-1}$ and once again we can easily pump. Thus L satisfies the pumping lemma.