
CS 381 HW 3 Solutions

October 19, 2001

2. Proof by Contradiction ( below S means delta hat )

Assume there exists a Machine M such that L(M)= L and that the number
of states in M < max { |w| : w in L }

Take the longest word in L, call it wmax. By the pigeonhole principle, we
can see that wmax must visit at least one state more than once (since it has
more characters than the Machine has states). Pick one such state, call it q. We
know, that since wmax is accepted, that there exists a path from the start state
to q, q to itself, and q to an accept state– i.e there exists non-empty strings x,
y, and z such that:

S(p, x) = q (where p is the start state) S(q, y) = q S(q, z) = r (where r is
an element of F)

We can show that xyyz is accepted: S(S(S(S(p,x), y), y), z) S(S(S(q, y), y),
z) S(S(q, y), z) S(q, z) r

But |xyyz| > |xyz| = wmax. We have a contradiction. So a DFA that ac-
cepts a finite language must have >= max{|w| : w ∈ L} states.

5a. Prove that L = {w: #0(w) - #1(w) ≡ 1 mod 3} is regular. We prove that
L is regular by constructing a DFA that computes L.

Let Q = {q0,q1,q2}
s = a;
F = {b}
δ(qi, 0) = q(i+1)mod3

δ(qi, 1) = q(i−1)mod3

We can easily see that the DFA keeps track of the difference between number
of 0 and number of 1 mod 3 at every step.
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5b. Prove that L’ ={|w: #0(w) - #1(w)| ≡ 1 mod 3} is not regular

• pick k > 0.

• let s = 0k+1 1k ∈ L’ for all k.

• s = xyz: x = 0k+1, y = 1k, z = ε. w = xyz, |y| ≥ k.

• y = uvw. u = 1n, v = 1m, w = 1k−n−m m > 0.

• let i = 4 and consider w = xuv4wz = 0k+1 1n 14m 1k−n−m ε = 0k+1

1k+3m.

• #0(s) = k+1; #1(s) = k+3m. Therefore |w: #0(s) - #1(s)|= |1-3m|. m
> 0 therefore, |1-3m| = 3m - 1. But 3m - 1 ≡ 2 mod 3 is not equivalent
to 1 mod 3. Therefore s is not in L’.

We have shown that ∀ k>0 ∃ x,y,z as defined above such that xyz ∈ L’, |y| > 0
so that for all uvw = y, |v| > 0, ∃ i such that xuviyz is not in L’. Therefore, L’
is not regular.

6. Prove that for every regular expression r there exists a regular expression t,
such that: L(r) = {w : w 6∈ L(t)}.

Solution:

1. For all regular expressions r, L(r) is a regular language (Theorem 8.1).

2. Regular languages are closed under complementation, therefore L(r) is a
regular language.

3. For all r, L(r)={w : w 6∈ L(r)} since by definition of complement L(r)
⋂
L(r) =

∅ and L(r)
⋃
L(r) = Σ∗.

4. Let A = L(r), then there exists t, with t a regular expression, s.t. A=L(t)
(Theorem 8.1) and thus L(t) = L(r).

5. For all r there exists t such that L(r) = {w : w 6∈ L(t)} by substitution.

Comment: The proof to this problem was fairly easy/intuitive. For that
reason it was graded largely in part on how formal an argument you gave. In
particular, we were looking for justification to claims you made (ie Theorem 8.1
and closure of regular languages under complementation).

7. Find a regular expression t over {0,1}* s.t. L(t) = {w : w 6∈ L(((0 + 1)(0 +
1))∗)}

((0+1)(0+1))* = ( 00 + 01 + 10 + 11 )* = all even length strings (Strings
of length 2n) so L(t) = all strings not of even length (Strings of length 2n + 1)
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t = (( 00 + 01 + 10 + 11 )*) = {0, 1} (( 00 + 01 + 10 + 11 )*) = ( 0+1 )
(( 00 + 01 + 10 + 11 )*) = ( 0+1 ) ( (0+1)(0+1) )*

8. For each of the following languages L (over S = {o, p, q}) find a regular
expression rL such that L(rL) = L.

i) L = {w: if p occurs in w then w ends with q}

Solution: (o+q)*p(o+p+q)*q+(o+q)*

Comment: Many people did not take into account the case when no p’s
occur in w, and thus left out the (o+q)* term. Another equally correct, yet less
apparent, answer is (o+p+q)*q+(o+q)*.

ii) L = {w: #p(w) is even}

Solution: ((o+q)*p(o+q)*p(o+q)*)*+(o+q)*

Comment: There were many different ways of expressing this. But again,
some people did not take into account the case when 0 p’s occur in w. Other’s
made the more serious mistake of ignoring cases like s1ps2s3s4ps5 and con-
structed a regular expression using ’pp’ to ensure an even number of p’s. If you
did that, make sure you understand the correct solution.

iii) L = {w: the next-to-last letter in w is p}

Solution: (o+p+q)*p(o+p+q)

Comment: This was an easy one. Most people got this right.

General Comments: These questions asked for a regular expression. Do
not give patterns (chapter 7 was not assigned reading).

9. For each of the following languages L, describe the equivalence classes of
RL and determine the rank of RL:

i L = {w ∈ {0, 1}∗ : w contains exactly two 1′s}

ii L = {0m1k0m+k : m, k ∈ N}

iii L = L(ab(a+ b)∗ab)

Solution:
i.
The min-DFA that accepts L is:
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M = (Q,Σ, δ, s, F )
Q = {σ1, σ2, σ3, σ4}
Σ = {0, 1}
s = σ1

F = {σ3}
δ(σ1, 0) = σ1, δ(σ1, 1) = σ2

δ(σ2, 0) = σ2, δ(σ2, 1) = σ3

δ(σ3, 0) = σ3, δ(σ3, 1) = σ4

δ(σ4, 0) = σ4, δ(σ4, 1) = σ4

the rank of RL =the number of the states of the min-DFA that accepts L,thus
the rank=4. And each equivalence class corresponds to a diffirent state in the
DFA. There are 4 states:σ1, σ2, σ3, σ4, so we have 4 equivalence classes:Ai =
{x|δ(σ1, x) = σi}, i=1,2,3,4. or:

A1. [0]=L(0
∗)

A2. [1]=L(0
∗10∗)

A3. [11]=L(0
∗10∗10∗)

A4. [111]=L(0
∗10∗10∗1(0 + 1)∗)

ii.
This language is not regular, so we can not use the same idea as i. Consider
any string w1 ∈ {0, 1}

∗. There are two cases:
1)w1 can not be a prefix of any string in L. In this case:

w1RLw2 ⇔ w2 can not be a prefix of any string in L either

so we get a equivalence class D={w|for all x ∈ {0, 1}∗, wx /∈ L}
2)w1 is a prefix of some string in L. in this case, we have:

w1 = 0
a, a ≥ 0 or

w1 = 0
a1b, a ≥ 0, b > 0 or

w1 = 0
a1b0c, a ≥ 0, b > 0, c > 0, a+ b ≥ c

Let A=L(0∗),B=L(0∗1+),C=L(0∗0+1+), then w1 ∈ A ∨ w1 ∈ B ∨ w1 ∈ C

w1 = 0
a, a ∈ N ,in other word:w1 ∈ A

in this case, we claim:w1 RL w2 ⇔ w2 = w1 = 0
a

let x=010a+2,w1x = 0
a+110a+2 ∈ L

w1 RL w2 ⇒ w2010
a+2 ∈ L→ 1 doesn′t appear in w2 → w2 /∈ B,w2 /∈ C ⇒ w2 ∈ A

let w2 = 0
a2 ,we can easily conclude that:w1 RL w2 ⇔ a = a2 thus we get infi-

nite number of equivalence classes here: Ai = {0
i}, i ∈ N
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w1 = 0
a1b, a ≥ 0, b > 0, in other words: w1 ∈ B

in this case we claim: w1 RL w2 ⇔ w2 = 0
a21b2 , b2 > 0, a+ b = a2 + b2

first w1 RL w2 ⇒ w2 /∈ A, because as we have show:w2 ∈ A ∧ w1RLw2 ⇒ w1 /∈
B. Also w2 /∈ C, because w110

a+b+1 = 0a1b+10a+b+1 ∈ L, but w10a+b+1 /∈
L, for any w ∈ C. Thus w2 ∈ B. Let w2 = 0

a21b2 , b2 > 0.

w1 RL w2 ⇒ For any x,w1x ∈ L∧w2x ∈ L⇒ x = 1i0j ⇒ j = a+b+i ∧ j = a2+b2+i ⇒ a+b = a2+b2

also we have infinite number of equivalence classes in this case Bi = {0
a1b|a+b =

i, b > 0}, i > 0

w1 = 0
a1b0c, a ≥ 0, b > 0, c > 0, a+ b ≥ c

in this case we claim:
w1 RL w2 ⇔ w2 = 0

a21b20c2 , b2 > 0, c2 > 0, a+ b− c = a2 + b2 − c2
Proof:
w1RLw2 ⇒ w2 /∈ A∧w2 /∈ B ⇒ w2 = 0

a21b20c2 , for some a2 ≥ 0, b2 > 0, c2 > 0

For any x,w1x ∈ L∧w2x ∈ L⇒ x = 0j ⇒ j+c = a+b ∧ j+c2 = a2+b2 ⇒ a+b−c = a2+b2−c2

also we have infinite number of equivalence classes in this case Ci = {0
a1b0c|a+

b− c = i, b > 0, c > 0, a+ b ≥ c}, i ∈ N

thus, the rank of RL =∞, the equivalence classes includes:

Ai = {0
i}, i ∈ N

Bi = {0
a1b|a+ b = i, b > 0}, i > 0

Ci = {0
a1b0c|a+ b− c = i, b > 0, c > 0, a+ b ≥ c}, i ∈ N

D = {w|for all x ∈ {0, 1}∗, wx /∈ L}

iii.
The min-DFA that accepts L is:

M = (Q,Σ, δ, s, F )
Q = {σ1, σ2, σ3, σ4, σ5, σ6}
Σ = {a, b}
s = σ1

F = {σ6}
δ(σ1, a) = σ2, δ(σ1, b) = σ6

δ(σ2, a) = σ6, δ(σ2, b) = σ3

δ(σ3, a) = σ4, δ(σ3, b) = σ3

δ(σ4, a) = σ4, δ(σ4, b) = σ5

δ(σ5, a) = σ4, δ(σ5, b) = σ3

δ(σ6, a) = σ6, δ(σ6, b) = σ6

the rank ofRL =6.The 6 equivalence classes:Ai = {x|δ(σ1, x) = σi}, i=1,2,3,4,5,6.
or:
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A1. [ε] = {ε}

A2. [a] = {a}

A3. [ab]=L(ab+ abb+ ab(a+ b)∗bb)

A4. [aba]=L(ab(a+ b)∗a)

A5. [abab]=L(ab(a+ b)∗ab)

A6. [aa]=L((aa+ b)(a+ b)∗)
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