1. Reading: D. Kozen Automata and Computability, lecture 33

2. The main message of this lecture:

One of the main methods of establishing undecidability is reduction. It is about time to give its systematic account.

When proving undecidability for a given CFG G whether or not $L(G) = \Sigma^*$ we have described an algorithmic procedure R that for each TM M and its input x builds a CFG $G = R(M,x)$ such that $L(G) = \sim V L C O M P S(M,x)$. Having done that we reduced the halting set

$$ HP = \{ M \# x \mid M \text{ halts on } x \}$$

to the set of context free grammars

$$ T = \{ G \mid G \text{ is a CFG and } G \text{ accepts all strings in its alphabet} \}. $$

Indeed, we have established that

$$ M \# x \in HP \iff R(M,x) \in T, $$

and concluded that any decision algorithm for T would immediately yield a decision procedure for HP: given M,x build a CFG $R(M,x)$ and check $R(M,x) \in T$. Since there HP is not recursive (undecidable) so is T.

Another example of reduction was given by the Gödel’s incompleteness theorem stating that the set of all true sentences of arithmetic $Th(N)$ is not r.e. There given M,x we built an arithmetical sentence $\gamma = R(M,x)$ such that

$$ M \text{ does not halt on } x \iff \gamma \in Th(N). $$

Again, we performed a reduction R of $\sim HP$ to the desired set $Th(N)$:

$$ M \# x \in \sim HP \iff R(M,x) \in Th(N) $$

and concluded that $Th(N)$ is not r.e., since otherwise we would have a positive test for $\sim HP$: transform M,x into an arithmetical sentence $R(M,x)$ and check $R(M,x) \in Th(N)$.

There is a general definition of reducibility behind those examples.

Definition 36.1. Given sets $A \in \Sigma^*$ and $B \in \Delta^*$, a reduction of A to B is a total computable function $\sigma : \Sigma^* \rightarrow \Delta^*$ such that for all $x \in \Sigma^*$,

$$ x \in A \iff \sigma(x) \in B. $$

Notation: $A \leq_m B$.

Theorem 36.2. If $A \leq_m B$ and B is recursive (r.e.), then so is A.

Proof is a straightforward repetition of the above reasoning.
Corollary 36.3. If $A \leq_m B$ and A is not recursive (not r.e.), then so is B.

Example 36.4. The set $FIN = \{ M \mid L(M) \text{ is finite} \}$ is not r.e. We establish that by reducing $\sim HP$ to FIN, i.e. by showing that $\sim HP \leq_m FIN$. We have to describe a computable procedure that given M, x produces a TM M' such that M does not halt on x iff $L(M')$ is finite (note that both M and x should be hard-wired in the finite control for M'). M' works as follows: given input y M' erases y and writes x on the tape, runs M on x, accepts if M halts on x. Obviously, if M does not halt on x, then $L(M') = \emptyset$, otherwise $L(M') = \Sigma^*$. Therefore,

$$M \text{ does not halt on } x \iff L(M') \text{ is finite.}$$

Example 36.5. The complement of FIN is also not r.e. Now we have to build another reduction R that given M, x produces M'' (with both M and x hard-wired in) such that M does not halt on x iff $L(M'')$ is infinite. Given input y the machine M'' simulates $|y|$ steps of M on x, accepts if M has not halted within that time, otherwise rejects. Let M halts on x after n of steps. Then M'' rejects on all inputs y longer than $n - 1$. In this case $L(M'') = \{ y \in \Sigma^* \mid |y| < n \}$ and therefore is finite. If M does not halt on x, then M'' accepts on all inputs and therefore $L(M'') = \Sigma^*$. We have established that

$$M \not\in x \in \sim HP \iff R(M \not\in x) \in \sim FIN.$$

Therefore, $\sim FIN$ is not r.e.

Example 36.6. Every r.e. set is m-reducible to the halting problem (i.e. $A \leq_m HP$ for any r.e. set A). This fact can be interpreted as saying that the halting problem is the most difficult semidecidable problem. Proof: let A be any r.e. set. Define a computable function $f(x, y)$ by

$$f(x, y) = \begin{cases} 1 & \text{if } x \in A \\ \text{undefined} & \text{if } x \notin A \end{cases}$$

The parameter theorem for the universal function U gives a total computable function φ such that $f(x, y) \equiv U(\varphi(x), y)$. It is clear from the definition of f above that

$$x \in A \iff f(x, 1) \text{ is defined} \iff U(\varphi(x), 1) \text{ is defined} \iff M_{\varphi(x)}(1) \in HP.$$