1. Reading: D. Kozen Automata and Computability, Lecture 27
J. Hopcroft and J. Ullman Introduction to Automata Theory, etc., section 6.3.

2. The main message of this lecture:

There are algorithms that given CFG determine whether the generated CFL is a) empty, b) finite, c) contains a given string. The latter is called the membership problem.

Theorem 25.1. There is an algorithm to determine if a CFL is empty.

Proof. Let $G = (\Gamma, \Sigma, P, S)$ be a CFG. Consider a set of nonterminals $V \subseteq \Gamma$ consisting of all A’s such that $A \vdash^* w$ for some terminal string w. Such V can be obtained by the following iterative procedure. Place to V all A’s such that $A \rightarrow w$ is a production from P. If $A \rightarrow X_1X_2\ldots X_n$ is a production, where each X_i is either a terminal or a nonterminal already placed in V, add A to V. If a scanning of the set of productions does not produce new members of V, halt. A proof that this algorithm produces V is straightforward (Hopcroft & Ullman, pp. 88-89). Now, $L(G) = \emptyset \iff S \notin V$. Q.E.D.

Definition 25.2. A symbol $A \in \Gamma \cup \Sigma$ is useful in a CFG $G = (\Gamma, \Sigma, P, S)$ if there is a derivation of some terminal string w from S containing A. Otherwise A is useless.

Theorem 25.3. Given a CFG $G = (\Gamma, \Sigma, P, S)$ with nonempty $L(G)$ we can effectively find an equivalent CFG $G' = (\Gamma', \Sigma', P', S)$ without useless symbols.

Proof. Since $L(G) \neq \emptyset$, for V from 25.1 $S \in V$. Obviously, we can get rid of all nonterminals not occurring in V, and all productions involving such nonterminals to get $G_1 = (V, \Sigma, P_1, S)$. This alone does not guarantee, however, that all nonterminals in V are useful. For example, in $\{S \rightarrow a, X \rightarrow b\} V = \{S, X\}$, but X is useless. Now, place S in Γ', and proceed with the following iterative algorithm. If $A \in \Gamma'$ and $A \rightarrow \alpha$ is a production from P_1, place all nonterminals from α to Γ' and all terminals from α to Σ'. Let P' to be the set of productions containing only symbols from $\Gamma' \cup \Sigma'$. Note, that if the original grammar G was in CNF, then the resulting G' is again in CNF. Q.E.D.

Theorem 25.4. There is an algorithm to determine if a CFL is finite.

Proof. By 25.3, without loss of generality we may assume that $G = (\Gamma, \Sigma, P, S)$ is a CNF without useless symbols such that $L(G) \neq \emptyset$. Draw a graph E with edges (A, B) such that $A \rightarrow BC$ or $A \rightarrow CB$ is a production. Then $L(G)$ is finite if and only if this graph has no cycles. Indeed,

1°. The graph E has a cycle $B, B_1, B_2, \ldots, B_{n-1}, B$. Therefore

$$B \rightarrow \alpha_1B_1\beta_1 \rightarrow \alpha_2B_2\beta_2 \rightarrow \ldots \rightarrow \alpha_{n-1}B_{n-1}\beta_{n-1} \rightarrow \alpha_nB\beta_n,$$

where α_i, β_i are strings of nonterminals of total length i (in a CNF the length of a string after a nonterminal substitution becomes exactly one unit longer). Since there are no useless symbols in G, there are terminal strings u and v of total length at least n such that $\alpha_n \rightarrow^* u$
and $\beta_n \to v$, therefore, $B \to uBu \to u^2Bu^2 \to \ldots \to u^mBu^m$ for any $m = 0, 1, 2, \ldots$. (Note that the argument more and more resembles the one from the Pumping Lemma for CFGs). Since B is useful, there is a derivation of some terminal string from S containing B, say $S \to \alpha B \beta \to xyz$, where $\alpha \to x$, $\beta \to z$, and $B \to y$. A substitution of u^mBu^m for B gives $S \to \alpha u^mBu^m \beta \to xu^myu^mz$ for each $m = 0, 1, 2, \ldots$. Thus $L(G)$ is infinite!

2. The graph E does not have cycles. Then the longest path in E has length $\leq k = |V|$ and every parsing tree in G has height $\leq k + 1$, and every derivable string has length $\leq 2^k$. There is only finite number of such strings over Σ. Q.E.D.

Example 25.5. Let G have productions $S \to AB$, $A \to BC$, $A \to a$, $B \to b$, $C \to c$. There are no cycles (note that S, A, B, S is not a cycle!), therefore $L(G)$ should be finite. A direct computation shows that $L(G) = \{ab, bca\}$.

Example 25.6. Let G have productions $S \to AB$, $A \to BS$, $A \to a$, $B \to b$, $C \to c$. First of all, we prune out useless symbols c, C. Remaining productions contain a cycle S, A, S, therefore $L(G)$ is infinite. Indeed, it is easy to see that G generates strings b^mabb^m for all $m = 0, 1, 2, \ldots$.

A membership problem: given $G = (\Gamma, \Sigma, P, S)$ and string x, is $x \in L(G)$? There is an obvious inefficient algorithms solving membership: Transform G into a CNF G', and try all derivations in G' shorter then $2|x|$ (there is only finite number of such derivations). Since any possible derivation of x in a CNF is shorter than $2|x|$, we will get a definite answer. Unfortunately, there might be exponentially many (of $|x|$) such derivations, and this algorithm is inefficient.

Theorem 25.7. There is a cubic algorithm of solving the membership problem in CFG.

Proof (Cocke-Kasami-Younger Algorithm). Again we assume that $G = (\Gamma, \Sigma, P, S)$ is a CNF such that $L(G) \neq \emptyset$. Using dynamic programming approach, determine for each nonterminal A whether $A \to x_{ij}$, where x_{ij} is the substring of x of length j beginning at position i.

```
begin
  1) for $i := 1$ to $n$ do
     $V_{i1} := \{A \mid A \to a$ is a production and the $i$th symbol of $x$ is $a\}$;
   2) for $j := 2$ to $n$ do
      3) for $i := 1$ to $n - j + 1$ do
         4) begin
            5) $V_{ij} := \emptyset$;
            6) for $k := 1$ to $j - 1$ do
               7) $V_{ij} := V_{ij} \cup \{A \mid A \to BC$ is a production, $B \in V_{ik}$ and $C \in V_{i+k,j-k}\}$
         end
   end
end
```

Step (1) takes $O(n)$ time. Step (7) alone takes a constant time depending upon $|P|$. The innermost loop (6) and (7) together takes $O(n)$ time, (5) is again of a constant time, therefore (4) takes $O(n)$ time. The loop (3) then takes $O(n^2)$ time, the loop (2) takes $O(n^3)$. The aggregate time for the entire algorithm is the total time spent (1) and (2), which is $O(n^3)$.

Eventually, $x \in L(G)$ if and only if $S \in V_{in}$.

Homework problems. Kozen, p.338 § 91.