1. Reading: D. Kozen Automata and Computability, Lecture 27
J. Hopcroft and J. Ullman Introduction to Automata Theory, etc., section 6.2.

2. The main message of this lecture:

Closure properties of context-free languages help to build new CFLs and to prove that some languages are not context-free. CFLs contain all regular languages, are closed under unions, concatenations, asterates, intersections with regular languages, homomorphic images and inverse images. CFLs are not closed under intersections and complementations.

Theorem 24.1. CFLs are closed under unions.

Proof. Let $A_1 = L(G_1)$ and $A_2 = L(G_2)$ where a CFG $G_i = (N_i, \Sigma, P_i, S_i)$, $i = 1, 2$, N_1 and N_2 are disjoint. Take $G = (N_1 \cup N_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}, S)$. Claim: $A_1 \cup A_2 = L(G)$. Indeed, $x \in A_i \Rightarrow S_1 \xrightarrow{*} G_i x \Rightarrow S \xrightarrow{*} G x \Rightarrow x \in L(G)$, thus $A_1 \cup A_2 \subseteq L(G)$. On the other hand, let $x \in L(G)$, i.e. $S \xrightarrow{*} G x$. Consider the very first step in a given derivation of x: it is either $S \xrightarrow{1} S_1$ or $S \xrightarrow{1} S_2$ since no other productions in G contain S. In the former case the rest of the derivation of x is entirely in G_1, since none of the productions from G_2 applies, therefore $S \xrightarrow{*} G_i x$ and $x \in A_1$. Similarly, in the latter case $x \in A_2$. In either case $x \in A_1 \cup A_2$, thus $L(G) \subseteq A_1 \cup A_2$. Q.E.D.

Theorem 24.2. CFLs are closed under concatenations.

Proof. Let $A = L(G_1)$ and $B = L(G_2)$ where a CFG $G_i = (N_i, \Sigma, P_i, S_i)$, $i = 1, 2$, N_1 and N_2 are disjoint. Take $G = (N_1 \cup N_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}, S)$. Claim: $A_1A_2 = L(G)$. Indeed, let $x_1 \in A_1$ and $x_2 \in A_2$. Then $S_i \xrightarrow{*} G_i x_i$ and $S \xrightarrow{1} S_1S_2 \xrightarrow{*} G x_1S_2 \xrightarrow{*} G x_1x_2$. Therefore, $A_1A_2 \subseteq L(G)$. Let now $y \in L(G)$. The very first step in this derivation is necessarily $S \xrightarrow{1} S_1S_2$, since no other production in G contains S. It is easy to see that all productions in this derivation performed on descendants of S_i are in fact productions from G_i. Therefore, the derived string y is in fact a concatenation of x_1x_2, where $S_1 \xrightarrow{*} G x_1$ and $S_2 \xrightarrow{*} G x_2$. All productions in the former derivation are from G_1 and all productions in the latter derivation are from G_2. Therefore, $S_1 \xrightarrow{*} G_1 x_1$ and $S_2 \xrightarrow{*} G_2 x_2$, hence $y = x_1x_2 \in A_1A_2$. Q.E.D.

Theorem 24.3. CFLs are closed under asterate.

Proof. Let $A = L(G_1)$, where $G_1 = (N_1, \Sigma, P_1, S_1)$. Then A^* is generated by $G = (N_1 \cup \{S\}, \Sigma, P_1 \cup \{S \rightarrow S_i | \epsilon \}, S)$. Indeed, let $x \in A^*$, then $x = y_1y_2 \ldots y_n$ for some $y_i \in A$, $i = 1, 2, \ldots, n$, $n \geq 0$. Therefore $S \xrightarrow{1} G_1 y_i$. Here is a derivation of x in G

$S \xrightarrow{n} (S_1)^n S \xrightarrow{1} (S_1)^n \xrightarrow{*} y_1y_2 \ldots y_n$. Let $x \in L(G)$. By induction on derivation of x in G we prove that $x \in A^*$.

Base. $S \xrightarrow{1} x$. Since x does not contain nonterminals, $x = \epsilon \in A^*$.
Step. Let $S \overset{n+1}{\Rightarrow} x$. Analyzing the first step of this derivation we conclude that $S \overset{1}{\Rightarrow} S_1 S \overset{n}{\Rightarrow} y_1 y$, where $S_1 \overset{k}{\Rightarrow} y_1$ and $S \overset{l}{\Rightarrow} y$ for some $k, l > 0$ such that $k + l = n$. By the induction hypothesis, $y_1 \in A^*$ and $y \in A^*$, therefore $y_1 y \in A^*$.

Q.E.D.

Corollary 24.4. Every regular language is CFL.

Proof. Let $A = L(\alpha)$ for some regular expression α over $\Sigma = \{a_1, a_2, \ldots, a_n\}$. By induction on the length of α we establish that A is CFL.

Base: If $\alpha = a_i$, use the grammar $S \rightarrow a_i$. If $\alpha = \epsilon$ then use $S \rightarrow \epsilon$. If $\alpha = \emptyset$, then use $S \rightarrow S$ (the set of derivable terminal strings there is \emptyset).

Step. For ‘+’ use 24.1, for concatenation use 24.2, for * use 24.3.

Q.E.D.

Theorem 24.5. CFLs are closed under homomorphisms.

Proof. Let $A = L(G)$ for some CFG $G = (N, \Sigma, P, S)$, $\Sigma = \{a_1, a_2, \ldots, a_n\}$, and let $h(a_i) = \alpha_i$, $i = 1, 2, \ldots, n$, be a homomorphism. Claim: $B = h(A)$ is also context free. Construct $G' = (N', \Sigma', P', S)$ for B as follows.

$N' = N \cup \{S_1, S_2, \ldots, S_n\}$, where S_i are new nonterminals

Σ' is the union of all symbols from α_i's

P' is the union of 1) the results of substituting S_i for each instance of a_i in every production from P, 2) $S_i \rightarrow \alpha_i$, $i = 1, 2, \ldots, n$

For each G-derivation $S \overset{*}{\Rightarrow} a_n a_{n-1} \cdots a_1$ the grammar G' derives

$S \overset{*}{\Rightarrow} S_{i_1} S_{i_2} \cdots S_{i_k} \overset{*}{\Rightarrow} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k}$.

Q.E.D.

Theorem 24.6. CFLs are closed under inverse homomorphic images.

Proof. Hopcroft-Ullman, pp. 132-134.

Theorem 24.7. CFLs are closed under intersections with regular sets.

Proof. Let $A = L(M)$ for an NPDA M and $R = L(N)$ for a DFA N. We build an NPDA M' for $A \cap R$ by a product construction: the states of M' are pairs of states from M and from N. The general idea of M' is to run M and N in parallel on the same input. The first component of M' simulates moves of M, including takings care of the stack changes. The second component of M' simulates moves of N without paying any attention on the stack. M' accepts x only when both M and N accept x, i.e. when $x \in A \cap R$. For the details, see Hopcroft-Ullman, pp. 134-135. This construction does not extend to the case of two NPDA’s. Why? Q.E.D.

Theorem 24.8. CFLs are NOT closed under intersections.

Proof. $A = \{a^n b^n c^n \mid m, n \geq 0\}$ and $B = \{a^n b^m c^m \mid m, n \geq 0\}$ are both CFL, but $A \cap B = \{a^n b^n c^n \mid n \geq 0\}$ is not CFL.

Q.E.D.

Theorem 24.9. CFLs are NOT closed under complementations.

Proof. Otherwise CFLs would be closed under intersections, since $A \cap \sim B \sim (\sim A \cup \sim B)$.

Homework problems. Kozen, p.335 § 76a; p.336 § 84fgh; § 85abfin.