Handout #9

Problem 1
(a)-(i)
(b)-(iii)
(c)-(v)
(d)-(iv)
(e)-(ii)

Problem 2
(ab*a + ba*b)* (ab* + ba*)

Handout #10

Problem 1
(a) \(h^{-1}(A) = \{\varepsilon\} \)
(b) \(h(B) = (01 + 0)^* \)
(c) \(h^{-1}(C) = a^* \)

Handout #11

Problem 1
The proof will be by contradiction. Assume that the languages are regular and are accepted by a DFA with \(n \) states. Let \(x \) be the sufficiently long string which will be used to give the contradiction.

(a) Let \(x = a^n b a^n \). Clearly \(x = \text{rev}(x) \). Hence we can apply pumping lemma to this string. Note that \(v \) will always consists of \(a \)'s to the left of \(b \). Hence pumping this region will result in a new string which has an asymmetrical distribution of \(a \)'s around \(b \). Hence the new string is not in the language. Hence the original language is not regular.

(b) Let \(x = (\varepsilon)^n \{ n \ “(” \ followed \ by \ n \ “)” \} \). In this case \(v \) will always consists of “(”. Hence the pumped up string has no longer equal number of right & left parenthesis, a necessary condition for balanced string of parentheses.

Problem 2
(1) No. Use homomorphism \(h(a) = 0 \) and \(h(b) = 11 \).
(2) No. Let \(L = \{a^n b^n | n \neq m \} \). Let \(L^C \) denote the complement of \(L \). Then if \(L \) is regular, it implies \(a^n b^n = a^* b^* \cap L^C \) is regular, a contradiction.
(3) No. Take \(z = a^n c a^n \) where \(n \) is the number of states in the DFA and show a contradiction using the pumping lemma.
(4) Yes.