1. Reading: D. Kozen *Automata and Computability*, Lectures 15, 16
J. Hopcroft and J. Ullman *Introduction to Automata Theory, etc.*, section 3.4.

2. The main message of this lecture:

The first really deep theorem of the course: for every regular language A there exists a unique minimum state DFA accepting A. Moreover, such an automaton can be obtained from any DFA accepting A by pruning out inaccessible states and applying the minimization algorithm (Myhill-Nerode Theorem).

Imagine that two teams have different ideas of how to write a DFA accepting the same language A and eventually come with two different solutions M_1 and M_2. Naturally, we are interested in a DFA M having the fewest number of states possible and we decide to apply the minimization algorithm. Shall we apply minimization to both M_1 and M_2? May be our competitor will do even better and come with truly ingenious M_3? The wonderful Myhill-Nerode Theorem clarifies the picture immensely: in all of those cases we end up with the same minimum state DFA M!

Definition. Two DFA are *isomorphic* if one of them can be obtained from another by renaming of states. Here is the ‘official’ formulation: an *isomorphism* f of DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ and $N = (Q_N, \Sigma, \delta_N, s_N, F_N)$ is a one-to-one and onto mapping from Q_M to Q_N preserving ‘start’, ‘accept’ and the transition function: $f(s_M) = s_N, p \in F_M \iff f(p) \in F_N, f(\delta_M(p, a)) = \delta_N(f(p), a)$. Isomorphic automata have equal number of states, similar ‘start’ and ‘accept’ states, identical transition functions, and accept the same regular languages.

Definition. An *index* of an equivalence relation \approx on Q is the number of equivalence classes with respect to \approx. An equivalence relation \approx_1 is a *finer* than an equivalence relation \approx_2 (\approx_2 is coarser than \approx_1) if every equivalence class of \approx_1 is entirely contained in some equivalence class of \approx_2: $x \approx_1 y \Rightarrow x \approx_2 y$. An equivalence relation \approx refines a set R if every equivalence class of \approx is either entirely in R or entirely in $\sim R$: $x \approx_R y \Rightarrow (x \in R \iff y \in R)$. An equivalence relation \approx on Σ^* is a right congruence if $x \approx y \Rightarrow xz \approx yz$ for each strings $x, y, z \in \Sigma^*$.

Definition. Let $R \subseteq \Sigma^*$. We define an equivalence relation \equiv_R on Σ^* as

$x \equiv_R y \iff \forall z \in \Sigma^* (xz \in R \iff yz \in R)$.

Example 14.1. $R = \{a^{2n} \mid n \geq 0\} = \{\epsilon, aa, aaaa, \ldots\}$. Here \equiv_R has index 2, i.e. there are only two equivalence classes: $[\epsilon] = \{\epsilon, aa, aaaa, \ldots\} = R$ and $[a] = \{a, aaa, aaaaa, \ldots\} = Ra$.

Example 14.2. $R = \{a^{n^2} \mid n \geq 0\} = \{\epsilon, a, a^4, a^9, \ldots\}$. Here \equiv_R is of infinite index, i.e. there are infinitely many equivalence classes here. Indeed, it is easy to check that any two elements of R are not equivalent and hence generate distinct equivalence classes. For example, $[a] \neq_R [aaaa]$, since $a \cdot a = a^4 \in R$, but $aaaa \cdot aaa = a^{10} \notin R$.

Note that R from 14.1 is regular whereas R from 14.2 is not.
Lemma 14.3. \equiv_R is a right congruence refining R and is the coarsest such relation on Σ^*.

Proof. Right congruence: Let $x \equiv_R y$, i.e. $\forall z \in \Sigma^* (xz \in R \iff yz \in R)$. Then $xz \equiv_R yw$ for any string w. Indeed, for any string z

$$(xz)w \equiv_R xz \iff yz \iff (yw)z \in R.$$

Refines R: take $z = e$ in the definition of $x \equiv_R y$ and get $(x \in R \iff y \in R)$. \equiv_R is the coarsest: let \equiv is a right congruence refining R. Then

$$x \equiv y \Rightarrow \forall z (xz \equiv yz) \Rightarrow \forall z (xz \in R \iff yz \in R) \Rightarrow x \equiv_R y.$$

Theorem 14.4 (Myhill-Nerode Theorem) Let $R \subseteq \Sigma^*$. Then R is regular if and only if the relation \equiv_R is of finite index.

Proof. Let $R = L(M)$ for some DFA M. Define an equivalence relation $x \equiv_M y$ on strings over Σ as $\delta(s, x) = \delta(s, y)$. \equiv_M is a right congruence: $x \equiv_M y \Rightarrow \delta(s, x) = \delta(s, y) \Rightarrow \delta(s, x^i) = \delta(s, y^i) \Rightarrow xz \equiv_M yz$. It is also clear that \equiv_M refines R: $x \equiv_M y \Rightarrow \delta(s, x) = \delta(s, y) \Rightarrow (\delta(s, x) \in F \iff \delta(s, y) \in F) \Rightarrow (x \in R \iff y \in R)$. By lemma 14.3, \equiv_R is coarser than \equiv_M. In particular, \equiv_R has less equivalence classes than \equiv_M. Note that \equiv_M is of finite index, since the number of equivalence classes for $x \equiv_M y$ does not exceed the number of states in M. Therefore \equiv_R is also of finite index not exceeding the number of states in M.

Let now \equiv_R be of finite index. Define $M^R = (Q, \Sigma, \delta, s, F)$ such that $Q = (R/\equiv_R)$ (a finite set of equivalence classes with respect to \equiv_R), $\delta([x], a) = [xa]$, $s = [e]$, $F = \{[x] | x \in R\}$. We claim that $\delta([x], y) = [xy]$. Induction on $|y|$. The induction base is secured by the definition of δ above. The induction step: $\delta([x], ya) = \delta([x], y, a) = \delta([xy], a)$ (by the induction hypothesis) $= [xya]$. Claim: $R = L(M^R)$. Indeed

$$x \in L(M^R) \iff \delta([x], x) \in F \iff [x] \in F \iff [x] \in F \iff x \in R.$$

Corollary 14.5 M^R has the fewest number of states among all DFAs accepting R.

Corollary 14.6 The collapsing minimization algorithm returns a DFA isomorphic to M^R.

Proof. Let $N/\approx = (Q', \Sigma, \delta', s', F')$ be the collapsed automaton accepting R, and M^R as in Theorem 14.4. We define an isomorphism f from M_R to N/\approx: $f([x]) = \hat{\delta}(s', x)$. The mapping f is one-to-one. Indeed, suppose $f([x]) = f([y])$, i.e. $\hat{\delta}(s', x) = \hat{\delta}(s', y)$. Then $\hat{\delta}(\hat{\delta}(s', x), z) = \hat{\delta}(\hat{\delta}(s', y), z), \hat{\delta}(s', xz) = \hat{\delta}(s', yz), xz \in R \iff yz \in R$, therefore $[x] = [y]$. f is onto, since each state $q' \in Q'$ in N/\approx is accessible: there exists x such that $q' = \hat{\delta}(s', x)$. Start state: $f(s) = f([e]) = \hat{\delta}(s', e) = s'$. Accept states: $[x] \in F \iff x \in R$ (above) $\iff \hat{\delta}(s', x) \in F'$ (since N accepts R) $\iff f([x]) \in F'$ (definition of f). Let us do the transition function. $f(\delta([x], a)) = f([xa]) = \hat{\delta}(s', xa) = \hat{\delta}'(\hat{\delta}(s', x), a) = \hat{\delta}'(f([x]), a)$.

Example 14.7 The Myhill-Nerode automaton for $R = \{a^{2n} \mid n \geq 0\}$ from Example 14.1 has two states $[e] = R$ and $[a] = Ra$, $s = [e], F = \{R\} = \{[e]\}, \delta([e], a) = [a], \delta([a], a) = [e]$.

Problem 14.1 #53 from Kozen p. 329.

Problem 14.2 #55a from Kozen p. 329.