Storage

Hakim Weatherspoon
CS 3410
Computer Science
Cornell University

[Altinbuke, Walsh, Weatherspoon, Bala, Bracy, McKee, and Sirer]
Challenge

• How do we store lots of data for a long time
 – Disk (Hard disk, floppy disk, ...)
 – Tape (cassettes, backup, VHS, ...)
 – CDs/DVDs
Challenge

- How do we store lots of data for a long time
 - Disk (Hard disk, floppy disk, ... Solid State Disk (SSD))
 - Tape (cassettes, backup, VHS, ...)
 - CDs/DVDs
 - Non-Volatile Persistent Memory (NVM; e.g. 3D Xpoint)
I/O System Characteristics

• Dependability is important
 – Particularly for storage devices

• Performance measures
 – Latency (response time)
 – Throughput (bandwidth)
 – Desktops & embedded systems
 ▪ Mainly interested in response time & diversity of devices
 – Servers
 ▪ Mainly interested in throughput & expandability of devices
Memory Hierarchy

16 KB
Registers/L1
2 ns, random access

512 KB
L2
5 ns, random access

2 GB
DRAM
20-80 ns, random access

300 GB
Disk
2-8 ms, random access

1 TB
Tape
100s, sequential access
Memory Hierarchy

128 KB registers/L1 2 ns, random access
4 MB L2 5 ns, random access
256 GB DRAM 20-80 ns, random access
6 TB Disk 2-8 ms, random access
30 TB SSD 100 ns-10 us, random access

Millions of IOPS (I/O per sec)
Memory Hierarchy

- **128 KB**: registers/L1, 2 ns, random access
- **4 MB**: L2, 5 ns, random access
- **256 GB**: DRAM, 20-80 ns, random access
- **1 TB**: Non-volatile memory, 20-100 ns, random access
- **6 TB**: Disk, 2-8 ms, random access
- **30 TB**: SSD, 100ns-10us, random access

Millions of IOPS (I/O per sec)
Memory Hierarchy

- **SSD**
 - 30 TB
 - 100ns-10us, random access
 - Millions of IOPS (I/O per sec)

- **Server**
 - 256 TB
 - 10s of Disks

- **Rack of Servers**
 - 10 PB
 - 10s of Servers

- **Data Center**
 - 1 EB
 - 10-100s of Servers

- **Cloud**
 - 0.1 YB
 - 10-100s of Data Centers
The Rise of Cloud Computing

• How big is Big Data in the Cloud?
 • Exabytes: Delivery of petabytes of storage daily

Titan tech boom, randy katz, 2008
The Rise of Cloud Computing

- How big is Big Data in the Cloud?
- Most of the world's data (and computation) hosted by few companies
The Rise of Cloud Computing

• How big is Big Data in the Cloud?
 • Most of the worlds data (and computation) hosted by few companies
The Rise of Cloud Computing

• The promise of the Cloud
 • ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

NIST Cloud Definition
The Rise of Cloud Computing

• The promise of the Cloud
 • *ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.*

NIST Cloud Definition
Tapes

- Same basic principle for 8-tracks, cassettes, VHS, ...

- Ferric Oxide Powder: ferromagnetic material

- During recording, the audio signal is sent through the coil of wire to create a magnetic field in the core.

- During playback, the motion of the tape creates a varying magnetic field in the core and this generates a signal in the coil.
Disks & CDs

• Disks use same magnetic medium as tapes
 • concentric rings (not a spiral)

• CDs & DVDs use optics and a single spiral track
Disk Physics

Typical parameters:
- 1 spindle
- 1 arm assembly
- 1-4 platters
- 1-2 sides/platter
- 1 head per side (but only 1 active head at a time)
- 700-20480 tracks/surface
- 16-1600 sectors/track
Disk Accesses

• Accessing a disk requires:
 • specify sector: C (cylinder), H (head), and S (sector)
 • specify size: number of sectors to read or write
 • specify memory address

• Performance:
 • seek time: move the arm assembly to track
 • Rotational delay: wait for sector to come around
 • transfer time: get the bits off the disk
 • Controller time: time for setup
Example

- Average time to read/write 512-byte sector
 - Disk rotation at 10,000 RPM
 - Seek time: 6ms
 - Transfer rate: 50 MB/sec
 - Controller overhead: 0.2 ms

- Average time:
 - Seek time + rotational delay + transfer time + controller overhead
 - $6\text{ms} + 0.5 \text{rotation/(10,000 RPM)} + 0.5\text{KB/(50 MB/sec)} + 0.2\text{ms}$
 - $6.0 + 3.0 + 0.01 + 0.2 = 9.2\text{ms}$
Disk Access Example

• If actual average seek time is 2ms
 • Average read time = 5.2ms
Disk Scheduling

- Goal: minimize seek time
 - secondary goal: minimize rotational latency
- FCFS (First come first served)
- Shortest seek time
- SCAN/Elevator
 - First service all requests in one direction
 - Then reverse and serve in opposite direction
- Circular SCAN
 - Go off the edge and come to the beginning and start all over again
FCFS

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
SSTF

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
Disk Geometry: LBA

• New machines use *logical block addressing* instead of CHS
 • machine presents illusion of an array of blocks, numbered 0 to N

• Modern disks…
 • have varying number of sectors per track
 • roughly constant data density over disk
 • varying throughput over disk
 • remap and reorder blocks (to avoid defects)
 • completely obscure their actual physical geometry
 • have built-in caches to hide latencies when possible (but being careful of persistence requirements)
 • have internal software running on an embedded CPU
Flash Storage

- Nonvolatile semiconductor storage
 - $100 \times - 1000 \times$ faster than disk
 - Smaller, lower power
 - But more $$/GB (between disk and DRAM)
 - But, price is dropping and performance is increasing faster than disk
Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, …
- Flash bits wears out after 1000’s of accesses
 - Not suitable for direct RAM or disk replacement
- Flash has unusual interface
 - can only “reset” bits in large blocks
I/O vs. CPU Performance

• Amdahl’s Law
 – Don’t neglect I/O performance as parallelism increases compute performance

• Example
 – Benchmark takes 90s CPU time, 10s I/O time
 – Double the number of CPUs/2 years
 ▪ I/O unchanged

<table>
<thead>
<tr>
<th>Year</th>
<th>CPU time</th>
<th>I/O time</th>
<th>Elapsed time</th>
<th>% I/O time</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>90s</td>
<td>10s</td>
<td>100s</td>
<td>10%</td>
</tr>
<tr>
<td>+2</td>
<td>45s</td>
<td>10s</td>
<td>55s</td>
<td>18%</td>
</tr>
<tr>
<td>+4</td>
<td>23s</td>
<td>10s</td>
<td>33s</td>
<td>31%</td>
</tr>
<tr>
<td>+6</td>
<td>11s</td>
<td>10s</td>
<td>21s</td>
<td>47%</td>
</tr>
</tbody>
</table>
RAID

• Redundant Arrays of Inexpensive Disks
• Big idea:
 • Parallelism to gain performance
 • Redundancy to gain reliability
Raid 0

- Striping
- Non-redundant disk array!
Raid 1

- Mirrored Disks!
 - More expensive
 - On failure use the extra copy
Raid 2-3-4-5-6

- Bit Level Striping and Parity Checks!
- As level increases:
 - More guarantee against failure, more reliability
 - Better read/write performance
Summary

• Disks provide nonvolatile memory
• I/O performance measures
 • Throughput, response time
 • Dependability and cost very important
• RAID
 • Redundancy for fault tolerance and speed