Finite State Machines

Hakim Weatherspoon
CS 3410
Computer Science
Cornell University

The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer.
Goals for Today

Finite State Machines (FSM)

• How do we design logic circuits with state?
• Types of FSMs: Mealy and Moore Machines
• Examples: Serial Adder and a Digital Door Lock
Finite State Machines
Next Goal

How do we design logic circuits with state?
Finite State Machines

An electronic machine which has

• external inputs
• externally visible outputs
• internal state

Output and next state depend on

• inputs
• current state
Abstract Model of FSM

Machine is

\[M = (S, I, O, \delta) \]

- **S**: Finite set of states
- **I**: Finite set of inputs
- **O**: Finite set of outputs
- **\(\delta \)**: State transition function

Next state depends on present input and present state
Automata Model

Finite State Machine

- inputs from external world
- outputs to external world
- internal state
- combinational logic
Input: **up** or **down**
Output: **on** or **off**
States: **A**, **B**, **C**, or **D**
Input: = up or = down
Output: = on or = off
States: = A, = B, = C, or = D
Input: 0=up or 1=down
Output: 1=on or 0=off
States: 00=A, 01=B, 10=C, or 11=D
Outputs and next state depend on both current state and input
Special Case: Moore Machine

Outputs depend only on current state
Moore Machine FSM Example

Input: \text{up} \text{ or } \text{down}
Output: \text{on} \text{ or } \text{off}
States: A, B, C, or D
Input: **up** or **down**
Output: **on** or **off**
States: **A**, **B**, **C**, or **D**
Activity#2: Create a Logic Circuit for a Serial Adder

Add two infinite input bit streams

- streams are sent with least-significant-bit (lsb) first
- How many states are needed to represent FSM?
- Draw and Fill in FSM diagram

```
...10110
...01111
```

```
...00101
```

Sum: output

Strategy:
(1) Draw a state diagram (e.g. Mealy Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
FSM: State Diagram

___ states:
Inputs: ??? and ????
Output: ???
FSM: State Diagram

___ states:
Inputs: ??? and ???
Output: ???
(2) Write down all input and state combinations
(3) Encode states, inputs, and outputs as bits.
(4) Determine logic equations for next state and outputs
Example: Digital Door Lock

Digital Door Lock

Inputs:
• keycodes from keypad
• clock

Outputs:
• “unlock” signal
• display how many keys pressed so far
Door Lock: Inputs

Assumptions:

• signals are synchronized to clock
• Password is B-A-B

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Ø (no key)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>‘A’ pressed</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>‘B’ pressed</td>
</tr>
</tbody>
</table>
Assumptions:
- High pulse on U unlocks door

Strategy:
1. Draw a state diagram (e.g. Moore Machine)
2. Write output and next-state tables
3. Encode states, inputs, and outputs as bits
4. Determine logic equations for next state and outputs
Door Lock: Simplified State Diagram

(1) Draw a state diagram (e.g. Moore Machine)
(2) Write output and next-state tables
Door Lock: Simplified State Diagram

(2) Write output and next-state tables
(4) Determine logic equations for next state and outputs
(4) Determine logic equations for next state and outputs
Strategy:
(1) Draw a state diagram (e.g. Moore Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
Strategy:
(1) Draw a state diagram (e.g. Moore Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
Goals for today

Review

• Finite State Machines
Summary

We can now build interesting devices with sensors

- Using combinational logic

We can also store data values

- Stateful circuit elements (D Flip Flops, Registers, ...)
- State Machines or Ad-Hoc Circuits