Finite State Machines

CS 3410

Computer System Organization \& Programming
CornellCIS
COMPUTING AND INFORMATION SCIENCE
[K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Stateful Components

Combinational logic

- Output computed directly from inputs
- System has no internal state
- Nothing depends on the past!

Need:

- to record data
- to build stateful circuits
- a state-holding device

Sequential Logic \& Finite State Machines

Finite State Machines

An electronic machine which has

- external inputs
- externally visible outputs
- internal state

Output and next state depend on

- inputs
- current state

Automata Model

Finite State Machine

- inputs from external world
- outputs to external world
- internal state
- combinational logic

FSM Example

Input: 1 or 0
Output: 1 or 0
States: A or B
What input pattern is the FSM "looking for"?
[Mealy Machine]

Mealy Machine

General Case: Mealy Machine

Outputs and next state depend on both current state and input

Moore Machine

Outputs depend only on current state

xkcd

Why FSMs?

They help us reason about complex behavior.

Clicker Question:
What kind of machine is this?
(A) Mealy
(B) Moore
(C) Neither

Other FSMs

Activity: Build a Circuit for a Serial Adder

Add two infinite input bit streams

- streams sent with least-significant-bit (Isb) first

Clicker Question:
How many states are needed to represent this FSM?
(a) 0
(d) 3
(b) 1
(e) 4
(c) 2

Strategy for Building an FSM

(1) Draw a state diagram
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
(5) Draw the circuit

Step 1: State Diagram

Legend

(50)

States:

Inputs: a and b (drawn as 2-bit input ab)
Output: z

Strategy for Building an FSM

(1) Draw a state diagram
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
(5) Draw the circuit

Step 2: Output \& Next State Tables

a	b	Curr State s	z	Next State s^{\prime}

Strategy for Building an FSM

(1) Draw a state diagram
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
(5) Draw the circuit

Step 3: Create Bit Encoding

a	b	Currr State s	z	Next State s'

Encode states as bits S0 =
S1 =
2 states \rightarrow 1-bit enough
(1-hot also an option)

Copy from previous
Make a binary encoding instead of names

Strategy for Building an FSM

(1) Draw a state diagram
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
(5) Draw the circuit

Step 4: Create Logic Equations

Determine logic equations for next state and outputs

$$
s^{\prime}=
$$

Z =

Strategy for Building an FSM

(1) Draw a state diagram
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
(5) Draw the circuit: Simplify first!

Step 5: Draw the Circuit

Output
$\xrightarrow[\mathrm{z}]{ }$

FSMs in a Processor?

- multi-cycle (non-pipelined) processor

FSMs in a Processor?

- multi-cycle (non-pipelined) processor
- handling cache misses, branch mispredictions, interrupts
- tracking the state of data in your cache (cache coherency)

Consider a finite state machine that takes two inputs, A and B, and generates a single output, Z. Inputs are unsigned binary numbers, entered into the FSM one digit at a time, beginning with the most significant digit. The output, Z, should be the larger of the two numbers. Example: $A=1000$ and $B=0101$, then $Z=1000$ (the value of A).

Draw the state transition diagram (states \& arrows) that expresses this FSM. Use the notation $A B$ for inputs (10 means $A=1$ and $B=0$).
(1) Draw a state diagram
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs
(5) Draw the circuit

Clicker Question:
How many states are needed to represent this FSM?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

