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Big Picture: Input/Output (1/0)

How does a processor interact with its environment?

Computer System =
Memory + Datapath + Control + Input + Output
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|/O Devices Enables Interacting w/ Environment

Device Behavior Partner Data Rate (b/sec)

Keyboard Input Human 100

Mouse Input Human 3.8k

Sound Input Input Machine |3M

Voice Output Output Human 264k

Sound Output Output Human S\

Laser Printer Output Human 3.2M
Graphics Display Output Human 800M - 8G
Network/LAN Input/Output | Machine |100M - 10G
Network/Wireless LAN | Input/Output | Machine |11 - 54M
Optical Disk Storage Machine |5-120M
Flash memory Storage Machine |32 -200M
Magnetic Disk Storage Machine |800M — 3G




Round 1: All devices on one interconnect

Replace all devices as the interconnect changes

e.g. keyboard speed ==
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Round 2: 1/O Controllers

Decouple I/O devices from Interconnect

Enable smarter I/O interfaces
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Round 3: 1/0O Controllers + Bridge

Separate high-performance processor, memory, display
interconnect from lower-performance interconnect
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Bus Types

Processor — Memory (“Front Side Bus”. Also QPI)

* Short, fast, & wide
* Mostly fixed topology, designed as a “chipset”

— CPU + Caches + Interconnect + Memory Controller

/0 and Peripheral busses (PCI, SCSI, USB, LPC, ...)

.onger, slower, & narrower
-lexible topology, multiple/varied connections

nteroperability standards for devices
* Connect to processor-memory bus through a bridge




Example Interconnects

Name Use Devics per | Channel Data Rate
channel Width (B/sec)

Firewire 800 External | 63 4 100M
USB 2.0 External | 127 2 S101\Y/
USB 3.0 External | 127 2 625M
Parallel ATA Internal 16 133M
Serial ATA (SATA) Internal 4 300M
PCI 66MHz Internal 533M
PCl Express v2.X Internal 16G/dir

Hypertransport v2.x | Internal 25G/dir

QuickPath (QPI) Internal 12G/dir




|/O Device Driver Software Interface

Set of methods to write/read data to/from device and control device
Example: Linux Character Devices

// Open a toy "echo " character device
int fd = open("/dev/echo", O RDWR);

// Write to the device
char write buf[] = "Hello World!";

write(fd, write_buf, sizeof(write_buf));

// Read from the device
char read buf [32];
read(fd, read buf, sizeof(read buf));

// Close the device
close(fd);

// Verify the result
assert(strcmp(write buf, read buf)==0);




|/O Device API
Typical I/O Device API

* a set of read-only or read/write registers

ﬁ)mmand registers

* writing causes device to do something

Status registers

Data registers

* Write: transfer data to a device
\ * Read: transfer data from a device

~

* reading indicates what device is doing, error codes, ...

v

Every device uses this API




|/O Device API
Simple (old) example: AT Keyboard Device

8-bit Status: | PE

8-bit Command:

OxAA = “self test Buffer Buffer
OXAE = “enable kbd” Sieve | SEnie
OxXED = “set LEDs”

8-bit Data:
scancode (when reading)
LED state (when writing




Q: How c
A: specia

Programmed I/O

Communication Interface
oes -program- -O0S- code talk to device?

instructions to talk over special busses
Interact with cmd, status, and

data device registers directly

* inb $a, 0x64 <—— Khd status register

* outbSa,0x60 -

kbd data register

* Specifies: device, data, direction

-[ Protection: only allowed in kernel mode ]

Kernel boundary crossing is expensive



Communication Interface
Q: How does program- -©S- code talk to device?
A: Map registers into virtual address space
Memory-mapped |/O <——Faster. Less boundary crossing

* Accesses to certain addresses redirected to |/O devices
* Data goes over the memory bus

* Protection: via bits in pagetable entries

* OS+MMU+devices configure mappings
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Device Drivers
Programmed |/O Memory Mapped I/O

Both polling examples, struct kbd {
But mmap /O more efficient char status, pad[3];
char read_kbd() char data, pad[3];
{ }s
do { kbd *k = mmap(...);\\\
sleep();

syscall

status =[inb(0x64); char read_kbd()
} while(!(status &71)); {
-~ do {
return|inb(0x60); sleep();
NO - status = k->status;

Sysca“ Sysca” } While(!(StatUS & 1));
return k->data;

J




|/O Data Transfer

How to talk to device?

* Programmed I/O or Memory-Mapped 1/0
How to get events?

* Polling or Interrupts
How to transfer lots of data?

disk->cmd = READ 4K _SECTOR;
disk->data = 12;

while (!(disk->status & 1) { }—
for (i = 0..4k)

buf[i] = disk->data;

Very,
Very,
Expensive




Data Transfer
1. Programmed 1/O: Device €<= CPU <> RAM

CPU

* CPU issues read request

* Device puts data on bus
& CPU reads into registers

 CPU writes data to memory

2. Direct Memory Access (DMA): Device <> RAM

* CPU sets up DMA request

VALY

Device puts data on bus
& RAM accepts it

* Device interrupts CPU after done

Which one is the winner? Which one is the loser?




DMA Example

DMA example: reading from audio (mic) input

* DMA engine on audio device... or I/O controller ...

int dma_size = 4*PAGE_SIZE;
int *buf = alloc dma(dma size);

dev->mic_dma baseaddr = (int)buf;
dev->mic_dma_count = dma_len;

dev->cmd = DEV_MIC INPUT |
DEV_INTERRUPT _ENABLE | DEV_DMA ENABLE;




DMA Example

DMA example: reading from audio (mic) input

* DMA engine on audio device... or I/O controller ... or

int dma_size = 4*PAGE_SIZE;
void *buf = alloc dma(dma_size);

dev->mic_dma baseaddr = virt to phys(buf);

dev->mic_dma_count = dma_len;

dev->cmd = DEV_MIC INPUT |
DEV_INTERRUPT _ENABLE | DEV_DMA ENABLE;




Programmed 1/0O vs Memory Mapped I/0

Programmed 1/0O
* Requires special instructions
* Can require dedicated hardware interface to devices
* Protection enforced via kernel mode access to instructions

* Virtualization can be difficult

Memory-Mapped I/0O
* Re-uses standard load/store instructions
* Re-uses standard memory hardware interface
* Protection enforced with normal memory protection scheme

* Virtualization enabled with normal memory virtualization
scheme




Polling vs. Interrupts

How does program learn device is ready/done?
1. Polling: Periodically check 1/O status register
* Common in small, cheap, or real-time embedded systems

+ Predictable timing, inexpensive
— Wastes CPU cycles

2. Interrupts: Device sends interrupt to CPU

* Cause register identifies the interrupting device
* Interrupt handler examines device, decides what to do

+ Only interrupt when device ready/done
— Forced to save CPU context (PC, SP, registers, etc.)
— Unpredictable, event arrival depends on other devices’ activity

Which one is the winner? Which one is the loser?




|/O Takeaways

Diverse 1/O devices require hierarchical interconnect
which is more recently transitioning to point-to-point
topologies.

Memory-mapped I/O is an elegant technique to
read/write device registers with standard load/stores.

Interrupt-based |I/O avoids the wasted work in
polling-based I/0O and is usually more efficient.

Modern systems combine memory-mapped 1/0,
interrupt-based |I/O, and direct-memory access
to create sophisticated 1/0 device subsystems.




