
Anne	Bracy
CS	3410

Computer	Science
Cornell	University

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, McKee, and Sirer.

How	does	a	processor	interact	with	its	environment?

Computer	System	=	
Memory	+	Datapath +		Control

Display

Keyboard Network

Disk

+		Input	+		Output

Device Behavior Partner Data Rate	(b/sec)
Keyboard Input Human 100
Mouse Input Human 3.8k
Sound	Input Input Machine 3M
Voice	Output Output Human 264k
Sound	Output Output Human 8M
Laser Printer Output Human 3.2M
Graphics	Display Output Human 800M	– 8G
Network/LAN Input/Output Machine 100M	– 10G
Network/Wireless	LAN Input/Output Machine 11 – 54M
Optical	Disk Storage Machine 5 – 120M
Flash	memory Storage Machine 32	– 200M
Magnetic Disk Storage Machine 800M – 3G

Replace	all devices	as		the	interconnect	changes
e.g.	keyboard	speed	==	main	memory	speed	?!

Unified	Memory	and	I/O	Interconnect

Memory

Display Disk Keyboard Network

Core0
Cache

Core1
Cache

Decouple	I/O	devices	from	Interconnect
Enable	smarter	I/O	interfaces

Core0
Cache

Memory
Controller

I/O
Controller

Unified	Memory	and	I/O	Interconnect

Core1
Cache

Memory

Display

I/O
Controller

Disk

I/O
Controller

Keyboard

I/O
Controller

Network

Separate	high-performance	processor,	memory,	display	
interconnect	from	lower-performance	interconnect

Core0
Cache

Memory
Controller

I/O
Controller

High	Performance
Interconnect

Core1
Cache

Memory

Display

I/O
Controller

Disk

I/O
Controller

Keyboard

I/O
Controller

Network

Lower	Performance
Legacy	Interconnect

Processor	– Memory (“Front	Side	Bus”. Also	QPI)
• Short,	fast,	&	wide
• Mostly	fixed	topology,	designed	as	a	“chipset”

– CPU	+	Caches	+	Interconnect	+	Memory	Controller	

I/O	and	Peripheral	busses (PCI,	SCSI,	USB,	LPC,	…)
• Longer,	slower,	&	narrower
• Flexible	topology,	multiple/varied	connections
• Interoperability	standards	for	devices
• Connect	to	processor-memory	bus	through	a	bridge

Name Use Devics per	
channel

Channel	
Width

Data	Rate
(B/sec)

Firewire 800 External 63 4 100M
USB	2.0 External 127 2 60M
USB	3.0 External 127 2 625M
Parallel ATA Internal 1 16 133M
Serial ATA	(SATA) Internal 1 4 300M
PCI	66MHz Internal 1 32-64 533M
PCI Express	v2.x Internal 1 2-64 16G/dir
Hypertransport v2.x Internal 1 2-64 25G/dir
QuickPath (QPI) Internal 1 40 12G/dir

Set	of	methods	to	write/read	data	to/from	device	and	control	device
Example:	Linux	Character	Devices

//	Open	a	toy	"echo	"	character	device
int fd = open("/dev/echo", O_RDWR);

//	Write	to	the	device
char write_buf[] = "Hello World!";
write(fd, write_buf, sizeof(write_buf));

//	Read	from	the	device
char read_buf [32];
read(fd, read_buf, sizeof(read_buf));

//	Close	the	device
close(fd);

//	Verify	the	result
assert(strcmp(write_buf, read_buf)==0);

Typical	I/O	Device	API
• a	set	of	read-only	or	read/write	registers

Command	registers
• writing	causes	device	to	do	something

Status	registers
• reading	indicates	what	device	is	doing,	error	codes,	…

Data	registers
• Write:	transfer	data	to	a	device
• Read:	transfer	data	from	a	device

Every	device	uses	this	API

Simple	(old)	example:	AT	Keyboard	Device

8-bit	Status:
8-bit	Command:	
0xAA	=	“self	test”
0xAE	=	“enable	kbd”
0xED	=	“set	LEDs”

…
8-bit	Data:	
scancode (when	reading)	
LED	state	(when	writing)	or	…

PE TO AUXB LOCK AL2 SYSF IBS OBS

Input
Buffer
Status

Output
Buffer
Status

Q:	How	does	 program	 OS	 code	talk	to	device?
A:	special	instructions	to	talk	over	special	busses
Programmed	I/O
• inb $a,	0x64
• outb $a,	0x60
• Specifies:	device,	data,	direction
• Protection:	only	allowed	in	kernel	mode

Interact	with	cmd,	status,	and
data	device	registers	directly	

kbd status	register	
kbd data	register	

Kernel	boundary	crossing	is	expensive

Q:	How	does	 program	 OS	 code	talk	to	device?
A:	Map	registers	into	virtual	address	space
Memory-mapped	I/O
• Accesses	to	certain	addresses	redirected	to	I/O	devices
• Data	goes	over	the	memory	bus
• Protection:	via	bits	in	pagetable entries
• OS+MMU+devices configure	mappings

Faster.	Less	boundary	crossing

Memory-Mapped	I/O

Physical
Address	
SpaceVirtual

Address	
Space

0xFFFF	FFFF

0x00FF	FFFF

0x0000	0000 0x0000	0000

Display

Disk

Keyboard

Network

I/O
Controller

I/O
Controller

I/O
Controller

I/O
Controller

Less-favored	alternative	=	Programmed	I/O:
• Syscall	instructions	that	communicate	with	I/O
• Communicate	via	special	device	registers

Programmed	I/O

char read_kbd()
{
do {

sleep();
status = inb(0x64);

} while(!(status & 1));

return inb(0x60);
}

Memory	Mapped	I/O
struct kbd {

char status, pad[3];
char data, pad[3];

};
kbd *k = mmap(...);

char read_kbd()
{

do {
sleep();
status = k->status;

} while(!(status & 1));
return k->data;

}

syscall

syscall

NO
syscall

Both	polling	examples,
But	mmap I/O	more	efficient

How	to	talk	to	device?	
• Programmed	I/O	or	Memory-Mapped	I/O

How	to	get	events?
• Polling	or	Interrupts

How	to	transfer	lots	of	data?
disk->cmd = READ_4K_SECTOR;
disk->data = 12;
while (!(disk->status & 1) { }
for (i = 0..4k)

buf[i] = disk->data;

Very,
Very,
Expensive

1.	Programmed	I/O:		Device	ßà CPU	ßà RAM
for	(i =	1	..	n)
• CPU	issues	read	request
• Device	puts	data	on	bus
&	CPU	reads	into	registers

• CPU	writes	data	to	memory

2.	Direct	Memory	Access	(DMA):		Device	ßà RAM
• CPU	sets	up	DMA	request
• for	(i =	1	...	n)

Device	puts	data	on	bus
&	RAM	accepts	it

• Device	interrupts	CPU	after	done

CPU RAM

DISK

CPU RAM

DISK

Which	one	is	the	winner?	Which	one	is	the	loser?

DMA	example:	reading	from	audio	(mic)	input
• DMA	engine	on	audio	device…	or	I/O	controller	…	or	
…

int dma_size = 4*PAGE_SIZE;
int *buf = alloc_dma(dma_size);
...
dev->mic_dma_baseaddr = (int)buf;
dev->mic_dma_count = dma_len;
dev->cmd = DEV_MIC_INPUT |
DEV_INTERRUPT_ENABLE | DEV_DMA_ENABLE;

DMA	example:	reading	from	audio	(mic)	input
• DMA	engine	on	audio	device…	or	I/O	controller	…	or	
…

int dma_size = 4*PAGE_SIZE;
void *buf = alloc_dma(dma_size);
...
dev->mic_dma_baseaddr = virt_to_phys(buf);
dev->mic_dma_count = dma_len;
dev->cmd = DEV_MIC_INPUT |
DEV_INTERRUPT_ENABLE | DEV_DMA_ENABLE;

Programmed	I/O
• Requires	special	instructions
• Can	require	dedicated	hardware	interface	to	devices
• Protection	enforced	via	kernel	mode	access	to	instructions
• Virtualization	can	be	difficult

Memory-Mapped	I/O
• Re-uses	standard	load/store	instructions
• Re-uses	standard	memory	hardware	interface
• Protection	enforced	with	normal	memory	protection	scheme
• Virtualization	enabled	with	normal	memory	virtualization	
scheme

How	does	program	learn	device	is	ready/done?
1.	Polling: Periodically	check	I/O	status	register

• Common	in	small,	cheap,	or	real-time	embedded	systems
+ Predictable	timing,	inexpensive
– Wastes	CPU	cycles

2.	Interrupts: Device	sends	interrupt	to	CPU
• Cause	register	identifies	the	interrupting	device
• Interrupt	handler	examines	device,	decides	what	to	do
+ Only	interrupt	when	device	ready/done
– Forced	to	save	CPU	context	(PC,	SP,	registers,	etc.)
– Unpredictable,	event	arrival	depends	on	other	devices’	activity

Which	one	is	the	winner?	Which	one	is	the	loser?

Diverse	I/O	devices	require	hierarchical	interconnect	
which	is	more	recently	transitioning	to	point-to-point	
topologies.

Memory-mapped	I/O	is	an	elegant	technique	to	
read/write	device	registers	with	standard	load/stores.

Interrupt-based	I/O	avoids	the	wasted	work	in
polling-based	I/O	and	is	usually	more	efficient.

Modern	systems	combine	memory-mapped	I/O,
interrupt-based	I/O,	and	direct-memory	access
to	create	sophisticated	I/O	device	subsystems.

