
Anne	Bracy
CS	3410

Computer	Science
Cornell	University

P	&	H	Chapter	4.10,	1.7,	1.8,	5.10,	6	

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, McKee, and Sirer. Also some slides
from Amir Roth & Milo Martin in here.

seconds instructions cycles seconds
program program instruction cycle

2	Classic	Goals	of	Architects:
⬇ Clock	period		(⬆ Clock	frequency)
⬇ Cycles	per	Instruction	(⬆ IPC)

= x x

Darling	of	performance	improvement	for	decades

Why	is	this	no	longer	the	strategy?
Hitting	Limits:
• Pipeline	depth
• Clock	frequency	
• Moore’s	Law	&	Technology	Scaling
• Power

Exploiting	Intra-instruction	parallelism:
Pipelining	(decode	A	while	fetching	B)

Exploiting	Instruction	Level	Parallelism	(ILP):
Multiple	issue	pipeline	(2-wide,	4-wide,	etc.)
• Statically	detected	by	compiler	(VLIW)
• Dynamically	detected	by	HW		
Dynamically	Scheduled	(OoO)

a.k.a. Very	Long	Instruction	Word	(VLIW)
Compiler	groups	instructions	to	be	issued	together
• Packages	them	into	“issue	slots”

How	does	HW	detect	and	resolve	hazards?
It	doesn’t.	J Compiler	must	avoid	hazards

Example:	Static	Dual-Issue	32-bit	MIPS
• Instructions	come	in	pairs	(64-bit	aligned)

– One	ALU/branch	instruction	(or	nop)
– One	load/store	instruction	(or	nop)

Two-issue	packets
• One	ALU/branch	instruction
• One	load/store	instruction
• 64-bit	aligned

– ALU/branch,	then	load/store
– Pad	an	unused	instruction	with	nop

Address Instruction type Pipeline Stages
n ALU/branch IF ID EX MEM WB
n + 4 Load/store IF ID EX MEM WB
n + 8 ALU/branch IF ID EX MEM WB
n + 12 Load/store IF ID EX MEM WB
n + 16 ALU/branch IF ID EX MEM WB
n + 20 Load/store IF ID EX MEM WB

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

Schedule	this	for	dual-issue	MIPS
Loop: lw $t0, 0($s1) # $t0=array element

addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

Clicker	Question:	What	is	the	IPC	of	this	machine?	
(A)	0.8				(B)	1.0			(C)			1.25				(D)	1.5				(E)	2.0

Goal:	larger	instruction	windows	(to	play	with)
• Predication
• Loop	unrolling
• Function	in-lining
• Basic	block	modifications	(superblocks,	etc.)

Roadblocks
• Memory	dependences	(aliasing)
• Control	dependences

Exploiting	Intra-instruction	parallelism:
Pipelining	(decode	A	while	fetching	B)

Exploiting	Instruction	Level	Parallelism	(ILP):
Multiple	issue	pipeline	(2-wide,	4-wide,	etc.)
• Statically	detected	by	compiler	(VLIW)
• Dynamically	detected	by	HW
Dynamically	Scheduled	(OoO)

aka	SuperScalar Processor (c.f.	Intel)
• CPU	chooses	multiple	instructions	to	issue	each	cycle
• Compiler	can	help,	by	reordering	instructions….
• …	but	CPU	resolves	hazards

Even	better:	Speculation/Out-of-order	Execution
• Execute	instructions	as	early	as	possible
• Aggressive	register	renaming	(indirection	to	the	rescue!)
• Guess	results	of	branches,	loads,	etc.
• Roll	back	if	guesses	were	wrong
• Don’t	commit	results	until	all	previous	insns committed

It	was	awesome,	but	then	it	stopped	improving
Limiting	factors?
• Programs	dependencies
• Memory	dependence	detection	à be	conservative

– e.g.	Pointer	Aliasing:	A[0]	+=	1;	B[0]	*=	2;

• Hard	to	expose	parallelism
– Still	limited	by	the	fetch	stream	of	the	static	program

• Structural	limits
– Memory	delays	and	limited	bandwidth

• Hard	to	keep	pipelines	full,	especially	with	branches

Exploiting	Thread-Level	parallelism
Hardware	multithreading	to	improve	utilization:
• Multiplexing	multiple	threads	on	single	CPU
• Sacrifices	latency	for	throughput
• Single	thread	cannot	fully	utilize	CPU?	 Try	more!
• Three	types:	
• Course-grain	(has	preferred	thread)
• Fine-grain	(round	robin	between	threads)
• Simultaneous	(hyperthreading)

Process:	multiple	threads,	code,	data	and	OS	state
Threads:	share	code,	data,	files,	not regs or	stack

Time	evolution	of	issue	slots
• Color	=	thread,	white	=	no	instruction

CGMT FGMT SMT4-wide
Superscalar

tim
e

Switch	to	
thread	B	on	
thread	A	L2	

miss

Switch	
threads	

every	cycle

Insns	from	
multiple	
threads	
coexist

CPU Year Clock
Rate

Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those	simpler	cores	did	something	very	right.

Core 2006 2930MHz 14 4 Yes 2 75W
Core i5 Nehal 2010 3300MHz 14 4 Yes 1 87W
Core i5 Ivy Br 2012 3400MHz 14 4 Yes 8 77W
UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Moore’s	law
• A	law	about	transistors
• Smaller	means	more	transistors	per	die
• And	smaller	means	faster	too

But:	Power	consumption	growing	too…

486

286

8088

8080
80084004

386

Pentium

AtomP4
Itanium	2 K8

K10
Dual-core	Itanium	2

Hot	Plate

Rocket	Nozzle

Nuclear	Reactor

Surface	of	Sun

Xeon

180nm 32nm

Power	=	capacitance	*	voltage2 *	frequency	
In	practice:	Power	~	voltage3

Reducing	voltage	helps	(a	lot)
...	so	does	reducing	clock	speed
Better	cooling	helps

The	power	wall
• We	can’t	reduce	voltage	further
• We	can’t	remove	more	heat

Lower	Frequency

Dual-Core
Underclocked -20%

Power
1.0x
1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

Power
Performance 1.6x

1.02x

Q:	So	lets	just	all	use	multicore	from	now	on!
A:	Software	must	be	written	as	parallel	program

Multicore	difficulties
• Partitioning	work
• Coordination	&	synchronization
• Communications	overhead
• How	do	you	write	parallel	programs?

...	without	knowing	exact	underlying	architecture?

Partition	work so	all	cores	have	something	to	do

Need	to	partition	so	all	cores	are	actually	working

If	tasks	have	a	serial	part and	a	parallel	part…
Example:	

step	1:	divide	input	data	into	n pieces
step	2:	do	work	on	each	piece
step	3:	combine	all	results

Recall:	Amdahl’s	Law
As	number	of	cores	increases	…
• time	to	execute	parallel	part?	
• time	to	execute	serial	part?
• Serial	part	eventually	dominates

goes	to	zero
Remains	the	same

Necessity,	not	luxury
Power	wall

Not	easy	to	get	performance	out	of

Many	solutions
Pipelining
Multi-issue
Multithreading
Multicore

Q:	So	lets	just	all	use	multicore	from	now	on!
A:	Software	must	be	written	as	parallel	program

Multicore	difficulties
• Partitioning	work
• Coordination	&	synchronization
• Communications	overhead
• How	do	you	write	parallel	programs?

...	without	knowing	exact	underlying	architecture?

Cache	Coherency
• Processors	cache	shared dataà they	see	different	
(incoherent)	values	for	the	samememory	location

Synchronizing	parallel	programs
• Atomic	Instructions
• HW	support	for	synchronization

How	to	write	parallel	programs
• Threads	and	processes
• Critical	sections,	race	conditions,	and	mutexes

Shared	Memory	Multiprocessor	(SMP)
• Typical	(today):	2	– 4 processor	dies,	2	– 8	cores each	
• Hardware	provides	single	physical	address	space	for	
all	processors

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Thread	A	(on	Core0) Thread	B	(on	Core1)
for(int i =	0,	i <	5;	i++)	{ for(int j	=	0;	j	<	5;	j++)	{

x =	x +	1; x =	x +	1;
} }
What	will	the	value	of	x be	after	both	loops	finish?

Thread	A	(on	Core0) Thread	B	(on	Core1)
for(int i =	0,	i <	5;	i++)	{ for(int j	=	0;	j	<	5;	j++)	{

x =	x +	1; x =	x +	1;
} }
What	will	the	value	of	x be	after	both	loops	finish?

a) 6
b) 8
c) 10
d) Could	be	any	of	the	above
e) Couldn’t	be	any	of	the	above

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Thread	A	(on	Core0) Thread	B	(on	Core1)
for(int i =	0,	i <	5;	i++)	{ for(int j	=	0;	j	<	5;	j++)	{

LW	$t0,	addr(x) LW	$t0,	addr(x)
ADDIU	$t0,	$t0,	1 ADDIU	$t0,	$t0,	1
SW	$t0,	addr(x) SW	$t0,	addr(x)

} }

$t0=0

$t0=1

x=1

$t0=0

$t0=1

x=1

Problem!

X	 0	

X	 0	 X	 0	1	 1	

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

Executing	on	a	write-thru	cache:
Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

...Core0
Cache

Memory I/O

Interconnect

Core1
Cache

CoreN
Cache

... ...

Coherence
• What	values	can	be	returned	by	a	read
• Need	a	globally	uniform	(consistent)	view	of	a	single	

memory	location	
Solution:	Cache	Coherence	Protocols

Consistency
• When	a	written	value	will	be	returned	by	a	read
• Need	a	globally	uniform	(consistent)	view	of	all	

memory	locations	relative	to	each	other
Solution:	Memory	Consistency	Models

Coherence
• all	copies	have	same	data	at	all	times

Coherence	controller:
• Examines	bus	traffic	(addresses	and	data)
• Executes	coherence	protocol

– What	to	do	with	local	copy	when	you	see	
different	things	happening	on	bus

Three	processor-initiated	events
• Ld:	load				
• St:	store			
• WB:	write-back

Two	remote-initiated	events
• LdMiss:	read	miss	from	another processor
• StMiss:	write	miss	from	another processor

35

CPU
D$

	d
at
a

D$
	ta

gs

CC

bus

VI	(valid-invalid)	protocol:
• Two	states	(per	block	in	cache)

– V	(valid):	have	block
– I	(invalid):	don’t	have	block
+ Can	implement	with	valid	bit

Protocol	diagram	(left)
• If	you load/store	a	block:	transition	to	V
• If	anyone else wants	to	read/write	block:

– Give	it	up:	transition	to	I state
– Write-back	if	your	own	copy	is	dirty

This	is	an	invalidate	protocol
Update	protocol: copy	data,	don’t	
invalidate
• Sounds	good,	but	wastes	a	lot	of	bandwidth

36

I

V

Lo
ad
,	S
to
re

Ld
M
iss
,	S
tM

iss
,	W

B

Load,	Store

LdMiss/
StMiss

lw by	Thread	B	generates	an	“other	load	miss”	event	(LdMiss)
• Thread	A	responds	by	sending	its	dirty	copy,	transitioning	to	I

37

0
V:0 0

V:1 0

I: 1V:1

1V:2

CPU0 MemCPU1Thread A
lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

Thread B

lw t0, 0(r3)
ADDIU $t0,$t0,1
sw t0,0(r3)

LdMiss

VI	protocol	is	inefficient
– Only	one	cached	copy	allowed	in	entire	system
– Multiple	copies	can’t	exist	even	if	read-only

– Not	a	problem	in	example
– Big	problem	in	reality

MSI	(modified-shared-invalid)
• Fixes	problem:	splits	“V”	state	into	two	states

– M	(modified):	local	dirty	copy
– S	(shared):	local	clean	copy

• Allows	either
– Multiple	read-only	copies	(S-state)		--OR--
– Single	read/write	copy	(M-state)

38

I

M

St
or
e

St
M
iss
,	W

B

Load,	Store

S
Store

Load,	LdMiss

LdMiss/
StMiss

lw by	Thread	B	generates	a	“other	load	miss”	event	(LdMiss)
• Thread	A	responds	by	sending	its	dirty	copy,	transitioning	to	S

sw by	Thread	B	generates	a	“other	store	miss”	event	(StMiss)
• Thread	A	responds	by	transitioning	to	I

39

Thread A
lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

Thread B

lw t0, 0(r3),
ADDIU $t0,$t0,1
sw t0,0(r3)

0
S:0 0

M:1 0

S:1 1S:1

I:					 1M:2

CPU0 MemCPU1

Coherence	introduces	two	new	kinds	of	cache	misses
• Upgrade	miss

– On	stores	to	read-only	blocks
– Delay	to	acquire	write	permission	to	read-only	block

• Coherence	miss
– Miss	to	a	block	evicted	by	another	processor’s	requests

Making	the	cache	larger…
• Doesn’t	reduce	these	type	of	misses
• As	cache	grows	large,	these	sorts	of	misses	dominate

False	sharing
• Two	or	more	processors	sharing	parts	of	the	same	block
• But not the	same	bytes	within	that	block	(no	actual	sharing)
• Creates	pathological	“ping-pong”	behavior
• Careful	data	placement	may	help,	but	is	difficult

40

In	reality:	many	coherence	protocols
• Snooping:	VI,	MSI,	MESI,	MOESI,	…

– But	Snooping	doesn’t	scale
• Directory-based	protocols

– Caches	&	memory	record	blocks’	sharing	status	in	directory
– Nothing	is	free	à directory	protocols	are	slower!

Cache	Coherency:
• requires	that	reads return	most	recently	written value
• Is	a	hard	problem!

What	just	happened???
Is	MSI	Cache	Coherency	Protocol	Broken??

42

Thread A
lw t0, 0(r3)

ADDIU $t0,$t0,1
sw t0,0(x)

Thread B

lw t0, 0(r3)
ADDIU $t0,$t0,1
sw t0,0(x)

0
S:0 0

S:0 0S:0

M:1 1I:

CPU0 MemCPU1

I: 0M:1

Within	a	thread:	execution	is	sequential
Between	threads?
• No	ordering	or	timing	guarantees
• Might	even	run	on	different	cores	at	the	same	time

Problem: hard	to	program,	hard	to	reason	about
• Behavior	can	depend	on	subtle	timing	differences
• Bugs	may	be	impossible	to	reproduce

Cache	coherency	is	necessary	but	not sufficient…
Need	explicit	synchronization	to	make	guarantees	about	
concurrent	threads!

Timing-dependent	error	involving	access	to	shared	state	
Race	conditions	depend	on	how	threads	are	scheduled
• i.e.	who	wins	“races”	to	update	state

Challenges	of	Race	Conditions
• Races	are	intermittent,	may	occur	rarely
• Timing	dependent	=	small	changes	can	hide	bug

Program	is	correct	only if	all	possible schedules	are	safe		
• Number	of	possible	schedules	is	huge
• Imagine	adversary	who	switches	contexts	at	worst	possible	time

Atomic	read	&	write	memory	operation
• Between	read	&	write:	no	writes	to	that	address

Many	atomic	hardware	primitives
• test	and	set (x86)
• atomic	increment (x86)
• bus	lock	prefix (x86)
• compare	and	exchange (x86,	ARM	deprecated)
• linked	load	/	store	conditional (pair	of	insns)

(MIPS,	ARM,	PowerPC,	DEC	Alpha,	…)

Load	linked:	 LL rt, offset(rs)
“I	want	the	value	at	address	X.	Also,	start	monitoring	any	
writes	to	this	address.”

Store	conditional: SC rt, offset(rs)
“If	no	one	has	changed	the	value	at	address	X	since	the	LL,	
perform	this	store	and	tell	me	it	worked.”
• Data	at	location	has	not	changed	since	the	LL?

– SUCCESS:	
§ Performs	the	store	
§ Returns	1	in	rt

• Data	at	location	has	changed	since	the	LL?
– FAILURE:	

§ Does	not	perform	the	store
§ Returns	0	in	rt

Load	linked:	 LL rt, offset(rs)

Store	conditional: SC rt, offset(rs)

i++
↓
LW	$t0,	0($s0)
ADDIU	$t0,	$t0,	1
SW	$t0,	0($s0)

LL	$t0,	0($s0)
ADDIU	$t0,	$t0,	1
SC	$t0,	0($s0)
BEQZ	$t0,	try

try:

atomic(i++)
↓

Value	in	memory	changed	between	LL	and	SC	?
à SC	returns	0	in	$t0	à retry

Time Thread A Thread B Thread
A $t0

Thread
B $t0

Mem
[$s0]

0 0
1 try: LL $t0, 0($s0) 0 0
2 try: LL $t0, 0($s0) 0 0
3 ADDIU $t0, $t0, 1 1 0 0
4 ADDIU $t0, $t0, 1 1 1 0
5 SC $t0, 0($s0) 1 1 1
6 BEQZ $t0, try 1 1 1
7 SC $t0, 0 ($s0) 1 0 1
8 BEQZ $t0, try 1 0 1

Load	linked:	 LL $t0, offset($s0)

Store	conditional: SC $t0, offset($s0)

Success! Failure!

Create	atomic	version	of	every	instruction?	NO
Does	not	scale	or	solve	the	problem

To	eliminate	races:	identify	Critical	Sections
• only	one	thread	can	be	in
• Contending	threads	must	wait	to	enter

CSEnter();
Critical
section

CSExit();

T1 T2

time
CSEnter();

wait
wait
Critical
section

CSExit();
T1

T2

Implementation	of	CSEnter and	CSExit
• Only	one	thread	can	hold	the	lock	at	a	time

“I	have	the	lock”

m	=	0;	
mutex_lock(int *m) {
test_and_set: LI $t0, 1

LL $t1, 0($a0)
BNEZ $t1, test_and_set
SC $t0, 0($a0)
BEQZ $t0, test_and_set

}

mutex_unlock(int *m) {
SW $zero, 0($a0)

}

This	is	called	a	
Spin	lock
aka	spin	waiting

mutex_lock(int *m)

Time Thread A Thread B ThreadA ThreadB Mem
$t0 $t1 $t0 $t1 M[$a0]

0 0
1 try: LI $t0, 1 try: LI $t0, 1 1 1 0
2 LL $t1, 0($a0) LL $t1, 0($a0) 1 0 1 0 0
3 BNEZ $t1, try BNEZ $t1, try 1 0 1 0 0
4 SC $t0, 0 ($a0) 1 0 1
5 SC $t0, 0($a0) 0 0 1 0 1
6 BEQZ $t0, try BEQZ $t0, try 0 0 1 0 1
7

Success!Failure!
Critical sectiontry: LI $t0, 1

Goal:	enforce	data	
structure	invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n;

}

1 2 3

head tail

// consumer: take from head
char get() {
while (t == h) { };
char c = A[h];
h = (h+1)%n;
return c;

}

1 2 3 4

head tail

2 3 4

tailhead

Goal:	enforce	data	
structure	invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n;

}
// consumer: take from head
char get() {
while (t == h) { };
char c = A[h];
h = (h+1)%n;
return c;

}

Clicker	Q:
What’s	wrong	here?

a) Will	lose	update	to	t and/or	h
b) Invariant	is	not	upheld
c) Will	produce	if	full
d) Will	consume	if	empty
e) All	of	the	above

Goal:	enforce	data	
structure	invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n; ß

}
// consumer: take from head
char get() {
while (t == h) { }; ß
char c = A[h];
h = (h+1)%n; ß
return c;

}

What’s	wrong	here?
• Could	miss	an	update	to					

t or	h
• Breaks	invariants:	only	

produce	if	not	full,	only	
consume	if	not	empty

à Need	to	synchronize	access	
to	shared	data

Goal:	enforce	data	
structure	invariants

// invariant:
// data in A[h … t-1]
char A[100];
int h = 0, t = 0;

// producer: add to tail if room
void put(char c) {
A[t] = c;
t = (t+1)%n;

}
// consumer: take from head
char get() {
while (t == h) { };
char c = A[h];
h = (h+1)%n;
return c;

}

Does	this	fix	
work?

acquire-lock()

release-lock()

acquire-lock()

release-lock()

Rule	of	thumb:	
all	access	&	updates	
that	can	affect the	
invariant	become	
critical	sections

Lots	of	synchronization	variations…
Reader/writer	locks
• Any	number	of	threads	can	hold	a	read	lock
• Only	one	thread	can	hold	the	writer	lock

Semaphores
• N	threads	can	hold	lock	at	the	same	time

Monitors
• Concurrency-safe	data	structure	with	1	mutex
• All	operations	on	monitor	acquire/release	mutex
• One	thread	in	the	monitor	at	a	time

