Calling Conventions

Anne Bracy
CS 3410
Computer Science

Cornell University

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, McKee, and Sirer.

Instruction
Fetch

An executing program on chip

IF/ID

compute
jump/branch
targets

register
file

control

N
A

extend

detect
hazard

Execute

—
4+
O

EX/MEM

addr
d

out

memory

Memory

Write-
Back

e
o+
(@]

MEM/WB
2

What’s the problem?

. . Toam al I 'éiiuu'" | % »
e g, i iAANAAND
ST i s O - BLE. e —
TCOMD1780015 i id AL Eg 1Y AL

$71.1 5788 ‘\’g 168

SandyBridge Motherboard, 2011
http://news.softpedia.com

An executing program in memory
OxFffffffc

top

system reserved

@X80000000
Ox7FFFFfC

dynamic data (heap)

0x10000000 static data

code (text)

0x00400000

0x00000000

The Stack

Stack contains stack frames (aka “activation records”)
1 stack frame per dynamic function
Exists only for the duration of function
Grows down, “top” of stack is Ssp, r29
Example: lw Srl, 0(Ssp) puts word at top of stack into Srl

Each stack frame contains:

* Local variables, return address (later), register
backups (later) myfn stack frame

int main(..) {

main stack frame

myfn stack frame

system reserved S5p9

stack

v

J)

int myfn(int n) { heap
e static data

myfn(); code

system reserved

myfn(x);

The Heap

Heap holds dynamically allocated memory

* Program must maintain pointers to anything allocated
* Example: if Sr3 holds x
* |w Sr1, 0(Sr3) gets first word x points to

e Data exists from to

system reserved

stack

void some function() {
int *x = malloc(1000);
int *y = malloc(2000);
free(y);
int *z = malloc(3000);

3000 bytes

1000 bytes

system reserved

Data Segment
Data segment contains global variables

e Exist for all time, accessible to all routines

* Accessed w/global pointer
* Sgp, r28, points to middle of segment

* Example:

lw Srl, 0(Sgp) gets middle-most word

(here, max_players)

int max_players

int main(...) {

4;

system reserved

stack

v

1

heap
static data

code

system reserved

Globals and Locals
Variables Visibility Lifetime | Location

Function-Local

Global

Dynamic

int n = 100;
int main (int argc, char* argv[]) {
int i, m = n, sum = O;
int* A = malloc(4*m + 4);
for (i = 1; i <=m; i++) {
sum += i; A[i] = sum; }
printf ("Sum 1 to %d is %d\n", n, sum);

Globals and Locals
Variables Visibility Lifetime | Location

Function-Local | w/in function | function

: : stack
I, m, sum, A Invocation

program

Global n, str | whole program
Pros execution .data

Anywhere that | b/w malloc

Dynamlc *A has a pointer | and free heap

int n = 100;
int main (int argc, char* argv[]) {
int i, m = n, sum = 0O;
int* A = malloc(4*m + 4);
for (i = 1; i <=m; i++) {
sum += i; A[i] = sum; }
printf ("Sum 1 to %d is %d\n", n, sum);

Evil things allowed by C

Don’t ever write code like this!

Dangling pointers
into freed heap mem

Dangling pointers
into old stack frames

void some_function() {
int *x = malloc(1000);
int *y = malloc(2000);
free(y);
int *z = malloc(3000);
y[20] = 7;

void f1() {
int *x = f2();
int y = *X + 2;
}
int *f2() {
int a = 3;
return &a;

¥

iClicker Question

Which of the following is trouble-free code?

int *bubble() char *rubble()

{ int a; { char s[20];
. gets(s);
return &a; return s;

¥ }

int *toil() int *trouble()
{ s = malloc(20); { s = malloc(20);

return s; free(s);

¥

return s;

¥

How does a function call work?

int main (int argc, char* argv[]) {
int n = 9;
int result = myfn(n);

}

int myfn(int n) {
int f 1;
int 1 1;
int j n - 1;
while(j >= 0) {
+ *= 1;

return f;

Calling Convention for Procedure Calls

Transfer Control
* Caller 2 Routine
* Routine = Caller
Pass Arguments to and from the routine
* fixed length, variable length, recursively
* Get return value back to the caller
Manage Registers
* Allow each routine to use registers

* Prevent routines from clobbering each others’ data

What is a Convention?
There is no one true MIPS calling convention.
lecture != book !=gcc = spim = web 13

Jumps are not enough

main: /\ myfn:

jmyfn
after1:

add $1.$2.$3

j myfn \ | atter]

after2: ??? Change target
sub $3,%4.%5 on the fly ???

Jumps to the callee
Jumps back

What about multiple sites?

Jump-and-Link / Jump Register
r31

main: /\ myfn:

jalmyfn _“

after1:
add $1,$2,$3

jal myfn \Jr $31
after2:
sub $3,%4,%$5

JAL saves the PC in register S31
Subroutine returns by jumping to $31

Jump-and-Link / Jump Register
r31

main: /\ myfn:

jalmyfn _“

add $1,$2,$3 \

after1:

jal myfn \Jr $31

after2:
sub $3,%4.%5

JAL saves the PC in register S31
Subroutine returns by jumping to $31

What happens for recursive invocations?

JAL / JR for Recursion?

main:

after1:

jalmyfn _“

add $1,$2,$3

after1

S~

myfn:

after2:

if (fest)
jal myfn

jr $31

Problems with recursion:

®* overwrites contents of S31

JAL / JR for Recursion?

main:

after1:

jalmyfn _“

add $1,$2,$3

S~

myfn:

after2:

iIf (fest)
jal myfn

jr $31

Problems with recursion:

®* overwrites contents of S31

JAL / JR for Recursion?

Return from Recursive Call

main: /\ myfn:
jalmyfn _“ if (fest)
after1: jal myfn
add $1,$2,$3

Problems with recursion:

®* overwrites contents of S31

JAL / JR for Recursion?

Return from Original Call ???

main:

after1:

jalmyfn _“

add $1,$2,$3

/\ myfn:

after?-

iIf (fest)
jal myfn

jir $31

Problems with recursion:

®* overwrites contents of S31

Return Address lives in Stack Frame

Stack Manipulated by push/pop operations
Context: after 2" JAL to myfn (from myfn)

PUSH: ADDIU Ssp, Ssp, -20 // move sp down
SW S31, 16(Ssp) // store retn PC 1t

main stack frame

Context: 2" myfn is done (r31 == ???)
myfn stack frame

LW $31, 16(Ssp) // restore retn PC 2133599

ADDIU Ssp, Ssp, 20 // move sp up after2

JR S31 t myfn stack frame
S // return 1FDO

For now: Assume each frame = x20 bytes
(just to make this example concrete) 2

iClicker Question

Why do we need a JAL instruction for procedure calls?

. The only way to change the PC of your program is
with a JAL instruction.

. The system won’t let you jump to a procedure with
just a JMP instruction.

. If you JMP to a function, it doesn’t know where to
return to upon completion.

. Actually, JAL only works for the first function call.
With multiple active functions, JAL is not the right

iInstruction to use.

Calling Convention for Procedure Calls

Pass Arguments to and from the routine
* fixed length, variable length, recursively
e Get return value back to the caller
Manage Registers

* Allow each routine to use registers
* Prevent routines from clobbering each others’ data

Simple Argument Passing (1-4 args)

main() {
iInt x = myfn(6, 7);
X=X+ 2;

}

main:

i $a0, 6

i $a1,7

jal myfn

addi $r1, $v0, 2

First four arguments:

passed in registers $4-S7
e aka Sa0, Sal, Sa2, Sa3

Returned result:

passed back in a register
* Specifically, S2, aka SvO

Note: This is not the entire story for 1-4 arguments.
Please see the Full Story slides.

Many Arguments (5+ args)

main() {
myfn(0,1,2,3,4,5);

}

main:

i $a0, 0

i $a1, 1

i $a2, 2

i $a3, 3
addiu $sp,$sp,-8
i $8, 4

sw $8, 0($sp)
i $8, 5

sw $8, 4($sp)
jal myfn

~irst four arguments:

nassed in $S4-S7
 aka Sa0-Sa3

Subsequent arguments:

“spill” onto the stack

Note: This is not the entire story for 5+ arguments.
Please see the Full Story slides.

Argument Passing: the Full Story

main() {
myfn(0,1,2,3,4,5);

}

main:

i $a0, 0

i $a1, 1

i $a2, 2

i $a3, 3

addiu $sp,$sp,-24
i $8, 4

sw $8, 16($sp)
i $8, 5

sw $8, 20($sp)
jal myfn

5

4

space for a3

space for a2

space for al

space for a0

Arguments 1-4.
passed in $4-S7
room on stack

20(5s) Arguments 5+:

16(Ssp)
s Placed on stack

8(Ssp)
4(Ssp)
0(Ssp)

Stack decremented by
max(16, #args x 4)
Here: max (16, 24) = 24

Pros of Argument Passing Convention

* Consistent way of passing arguments to and
from subroutines
* Creates single location for all arguments

* Caller makes room for Sa0-$Sa3 on stack
* Callee must copy values from Sa0-Sa3 to stack

—> callee may treat all args as an array in memory
* Particularly helpful for functions w/ variable length
inputs: printf(“Scores: %d %d %d\n”, 1, 2, 3);
* Aside: not a bad place to store inputs if callee
needs to call a function (your input cannot stay
in Sa0 if you need to call another function!)

C & MIPS: the fine print

C allows passing whole structs
* 1int dist (struct Point pl, struct Point p2);

* Treated as collection of consecutive 32-bit arguments
— Registers for first 4 words, stack for rest

* Better: int dist (struct Point *pl, struct Point *p2);

Where are the arguments to:
volid sub (int a, i1nt b, int ¢, int d, int e);
vold 1salpha (char c);
vold treesort (struct Tree *root);
Where are the return values from:
struct Node *createNode () ;
struct Node mynode () ;
Many combinations of char, short, int, void *, struct, etc.

* MIPS treats char, short, int and void * identically

iClicker Question

Which is a true statement about the arguments to the
function

vold sub (int a, int b, i1nt ¢, 1nt d, 1nt e);

A. Arguments a-e are all passed in registers.
B. Arguments a-e are all stored on the stack.

C. Only e is stored on the stack, but space is
allocated for all 5 arguments.

. Only a-d are stored on the stack, but space is
allocated for all 5 arguments.

Frame Layout & the Frame Pointer

‘ ‘ Notice
blue’s Ret Addr are on

> * sp changes as functions call other
4f ; functions, complicates accesses
Sspace 10r a . .
P — Convenient to keep pointer to

space for a2 :
space for al bottom of stack == frame pointer

__space for a0 | $30, aka $fp
pink’s Ret Addr can be used to restore Ssp on exit

blue() {
pink(0,1,2,3,4,5);
y

pink(int @, int b, int ¢, intd, int e, intf) {

} .

Calling Convention for Procedure Calls

Manage Registers
* Allow each routine to use registers
* Prevent routines from clobbering each others’ data

Register Management

Functions:
 Are compiled in isolation
 Make use of general purpose registers

e (Call other functions in the middle of their execution

* These functions also use general purpose registers!
* No way to coordinate between caller & callee

- Need a convention for register management

Caller-saved

Registers that the caller cares about: $tO... $t9

About to call a function?

* Need value in a t-register after function returns?
—> save it to the stack before fn call
- restore it from the stack after fn returns

 Don’t need value? = do nothing

Functions
* Can freely use these registers
* Must assume that their contents
are destroyed by other functions

Callee-saved

Registers a function intends to use: $s0... $s9
About to use an s-register? You MUST:

 Save the current value on the stack before using
* Restore the old value from the stack before fn returns

Functions
* Must save these registers before

using them
 May assume that their contents

are preserved even across fn calls

Caller-Saved Registers in Practice

S, Assume the registers are free for the

/’ taking, use with no overhead
[use StO & St1]

Since subroutines will do the same,
addiu Ssp,Ssp,-8 must protect values needed later:

SW itl, 4(§Sp) Save before fn call
sw 5t0, 0(5sp) Restore after fn call
/

lw St1, 4(Ssp) /

lw $t0, 0(Ssp) Notice: Good registers to use if you
addiu $sp,Ssp,8 don’t call too many functions or if the
values don’t matter later on anyway.

.[.L.Jse St0 & St1]

Callee-Saved Registers in Practice

main:
addiu Ssp,Ssp,-32
sw Sra,28(Ssp)
sw Sfp, 24(Ssp)
sw Ss1, 20(Ssp)
sw Ss0, 16(Ssp)
addiu Sfp, Ssp, 28

[use SsO and Ss1]

lw Sra,28(Ssp)
lw Sfp,24(Ssp)
lw Ss1, 20Ssp)
lw $s0, 16(Ssp)
addiu Ssp,Ssp,32
jr Sra

Assume caller is using the registers
Save on entry
Restore on exit

Notice: Good registers to use if you make a
lot of function calls and need values that
are preserved across all of them.

Also, good if caller is actually using the
registers, otherwise the save and restores
are wasted. But hard to know this.

Convention Summary

first four arg words passed in Sa0-Sa3

remaining args passed in parent’s stack frame
return value (if any) in SvO, Sv1

stack frame (Sfp to Ssp) contains:

Sra (clobbered on JALSs) Sfp 2> saved ra

local variables saved fp

saved regs
space for 4 arguments to Callees .

(SsO ... Ss7)
arguments 5+ to Callees
callee save regs: preserved Jelec]
caller save regs: not preserved

global data accessed via Sgp outgoing
Ssp 2 args

MIPS Register Conventions

Zero

ri6

SsO

assembler temp

rl7/

Ss1

function
return values

ri8

Ss2

rl9

Ss3

function
arguments

r20

Ss4

r21

Ss5

r22

Ss6

r23

Ss7

saved
(callee save)

temps
(caller save)

r24

St8

r25

St9

more temps
(caller save)

r26

SkO

r27

Skl

reserved for
kernel

r28

Sgp

global data pointer

r29

Ssp

stack pointer

r30

Sfp

frame pointer

r3l

Sra

return address

Frame Layout on Stack n

Assume a function uses two callee-
save registers.

saved ra

saved fp ,
saved regs How do we allocate a stack frame:

($s0 ... $s7) How large is the stack frame?

What should be stored in the stack
locals frame?

Where should everything be

outgoing stored?
args

Frame Layout on Stack

saved ra

saved fp

saved regs

(SsO ... Ss7)

locals

outgoing
args

ADDIU Ssp, Ssp, -32 # allocate frame
SW Sra, 28(Ssp) # save Sra

SW Sfp, 24(Ssp) # save old Sfp

SW Ss1, 20(Ssp) # save ...

SW Ss0, 16(Ssp) # save ...

ADDIU Sfp, Ssp, 28 # set new frame ptr

BODY

LW Ss0O, 16(Ssp) # restore ...

LW Ss1, 20(Ssp) # restore ...

LW Sfp, 24(Ssp) # restore old Sfp
LW Sra, 28(Ssp) # restore Sra
ADDIU Ssp,Ssp, 32 # dealloc frame
JR Sra

| Buffer Overflow

blue’s ra blue() {
saved fp pink(0,1,2,3,4,5);
saved regs }

L argsforpink | yinkdint a, int b, int ¢, int d, int e, int f) {
pink’s ra int x;
blue’s fp orange(10,11,12,13,14);

saved regs)

s orange(int a, int b, int ¢, int, d, int e) {

args for orange char buf[100]:

fp>| orange’s ra gets(buf); // no bounds check!

osrf:g(e pink’s fp)
i saved regs

sp>| buf[100] What happens if more than 100 bytes
IS written to buf?

41

Optimizing Leaf Functions

Leaf function does not invoke any other functions
int f(int x, int y) {
return (x+y);

}

Optimizations?

No saved regs (or locals)

No outgoing args
Don’t push Sra

No frame at all? Possibly...

Activity #1: Body n
int test(int a, int b) {
int tmp = (a&b)+(a|b);
int s = sum(tmp,1,2,3,4,5);
int u = sum(s,tmp,b,a,b,a);
return u + a + b;

}

Correct Order:

1. Body First

2. Determine stack frame size
3. Complete Prologue/Epilogue

Activity #1: Body

int test(int a, int b) {
int tmp = (a&b)+(a|b);

int u = Sum(S,th,b,a:b:a)i
return u + a + b;

We’ll assume the yellow in order to
force your hand on the rest.

SsO for Sa0 / a

SslforSal/b

StO for tmp

Can we get rid of the NOP?
We want to do the |w...

test:

Prologue

MOVE Ss0, Sa0
MOVE Ss1, Sal
AND S$t0, Sa0, Sal
OR St1, Sao0, Sal
ADD S$t0, StO, St1

SW S$t0, 24(Ssp)

LW St0, 24(Ssp) 44

Activity #1: Body
int test(int a, int b) {
int tmp = (a&b)+(a|b);
int s = sum(tmp,1,2,3,4,5);

return u + a + b;

ADD SvO, Sv0, SsO #Hu+a
ADD SvO, Sv0,Ss1 # +b

Epilogue

Activity #2: Frame Size n

int test(int a, int b) {
int tmp = (a&b)+(a|b);
int s = sum(tmp,1,2,3,4,5);
int u = sum(s,tmp,b,a,b,a);
return u + a + b;

}

How many bytes do

saved ra
saved fp

we need to allocate

for the stack frame? saved regs
) (SsO and Ss1)

locals

(St0)
outgoing args

Minimum stack size for | space for a0 - a3
a standard function? [and 5" and 6" arg

Activity #2: Frame Size

int test(int a, int b) {
int tmp = (a&b)+(a|b);
int s = sum(tmp,1,2,3,4,5);
int u = sum(s,tmp,b,a,b,a);

return u + a + b;
} saved ra

saved ra saved fp

we need to allocate saved fp saved reg Ssl

for the stack frame? saved regs saved reg $s0
44 (SsO and Ss1) local StO

outgoing 6™ arg
outgoing 5t arg
space for Sa3
Sra + Sfp + 4 args = outgoing args space for $a2
6 x 4 bytes = 24 bytes space for a0 - a3 space for $al
and 5t and 6t arg space for Sa0

How many bytes do

Minimum stack size for leeslke
a standard function? (5t0)

Activity #3: Prologue & Epilogue n

allocate frame

save Sra

save old Sfp

callee save ...

callee save ...

set new frame ptr

restore ...

restore ...

restore old Sfp
restore Sra

dealloc frame

48

Activity #3: Prologue & Epilogue

saved ra

saved fp

saved reg Ssi

saved reg SsO

local St0

outgoing 6™ arg

outgoing 5t arg

space for Sa3

space for Sa2

space for Sal

space for Sa0

ADDIU S$sp, $sp, -44 # allocate frame

SW Sra, 40(Ssp)
SW Sfp, 36(Ssp)
SW S$s1, 32(Ssp)
SW S$s0, 28(Ssp)
ADDIU S$fp, Ssp, 40

Body

(previous slide, Activity #1)

LW Ss0, 28(Ssp)
LW Ss1, 32(Ssp)
LW Sfp, 36(Ssp)
LW Sra, 40(Ssp)
ADDIU Ssp, Ssp, 44
JR Sra

NOP

save Sra

save old Sfp

callee save ...

callee save ...

set new frame ptr

restore ...

restore ...

restore old Sfp
restore Sra

dealloc frame

49

