
1

Dynamic	Memory	Allocation

Anne	Bracy
CS	3410
Computer	Science
Cornell	University

Note:	these	slides	derive	from	those	by	Markus	Püschel at	CMU

2

Recommended	Approach
while (TRUE) {

code a little;
test a little;

}

Get	something	that	works!

“Premature	Optimization	is	the	Root	of	all	Evil”	
—Donald	Knuth

3

Today
¢ Basic	concepts
¢ Implicit	free	lists
¢ Explicit	free	lists
¢ Segregated	free	lists

4

Dynamic	Memory	Allocation

¢ Programmers	use	dynamic	memory	
allocators	(like	malloc)	to	acquire	
memory	at	run	time.	
§ For	data	structures	whose	size	is	only	

known	at	runtime

¢ Dynamic	memory	allocators	
manage	an	area	of	process	virtual	
memory known	as	the	heap.	

Heap	(via	malloc)

Program	text	(.text)

Initialized	data	(.data)

Uninitialized	data	(.bss)

User	stack

0

Top	of	heap
(brk ptr)

Application

Dynamic	Memory	Allocator

Heap

5

Dynamic	Memory	Allocation

¢ Allocator	maintains	heap	as	collection	of	variable	sized	blocks,	
which	are	either	allocated or	free

¢ Types	of	allocators
§ Explicit	allocator:		application	allocates	and	frees

§ E.g.,		malloc and	free in	C
§ Implicit	allocator: application	allocates,	but	does	not	free

§ E.g.	garbage	collection	in	Java,	ML,	and	Lisp

6

The	malloc Package
#include <stdlib.h>

void *malloc(size_t size)
§ Successful:

§ Returns	a	pointer	to	a	memory	block	of	at	least	size bytes
(typically)	aligned	to	8-byte	boundary

§ If	size == 0,	returns	NULL
§ Unsuccessful: returns	NULL	(0)	and	sets	errno

void free(void *p)
§ Returns	the	block	pointed	at	by	p to	pool	of	available	memory
§ pmust	come	from	a	previous	call	to	malloc or	realloc

Other	functions
§ calloc: initializes	allocated	block	to	zero	
§ realloc: changes	size	of	a	previously	allocated	block
§ sbrk: used	internally	by	allocators	to	grow	or	shrink	heap

7

malloc Example

void foo(int n, int m) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return p to the heap */
free(p);

}

8

Assumptions	Made	in	This	Lecture
¢ Memory	is	word	addressed
¢ Each	word	can	hold	a	pointer

Allocated	block
(4	words)

Free	block
(3	words) Free	word

Allocated	word

9

Allocation	Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

10

Constraints
¢ Applications

§ Can	issue	arbitrary	sequence	of	malloc and	free requests
§ free request	must	be	to	a	malloc’d block	(if	user	breaks	this	rule,	not	
free‘s problem)

¢ Allocators
§ Can’t	control	number	or	size	of	allocated	blocks
§ Must	respond	immediately	to	malloc requests

§ i.e.,	can’t	reorder	or	buffer	requests
§ Must	allocate	blocks	from	free	memory

§ i.e.,	can	only	place	allocated	blocks	in	free	memory
§ Must	align	blocks	so	they	satisfy	all	alignment	requirements

§ 8	byte	alignment	for	GNU	malloc (libc malloc)	on	Linux	boxes
§ Can	manipulate	and	modify	only	free	memory
§ Can’t	move	the	allocated	blocks	once	they	are	malloc’d

§ i.e.,	compaction	is	not	allowed

11

Performance	Goal	#1:	Throughput
¢ Given	some	sequence	of	malloc and	free requests:

§ R0,	R1,	...,	Rk,	...	,	Rn-1

¢ Maximize	Throughput:
§ Number	of	completed	requests	per	unit	time
§ Example:

§ 5,000		malloc calls	and	5,000	free calls	in	10	seconds	
§ Throughput	is	1,000	operations/second

12

Performance	Goal	#2:	Memory	Utilization
¢ Given	some	sequence	of	malloc and	free requests:

§ R0,	R1,	...,	Rk,	...	,	Rn-1

¢ Maximize	Memory	Utilization:
§ Extra	constraint	for	3410	version:	the	heap	does	not	grow!
§ For	a	given	task,	how	large	a	heap	do	you	need	to	succeed
§ Poor	memory	utilization	caused	by	fragmentation

Maximizing	throughput	and	peak	memory	utilization	=	HARD
§ These	goals	are	often	conflicting

Only	correct	implementations	will	be	tested	
for	utilization	and	correctness!

13

Internal	Fragmentation
¢ For	a	given	block,	internal	fragmentation	occurs	if	payload	(the	

amount	requested	by	the	application)	is	smaller	than	block	size

¢ Caused	by	
§ Overhead	of	maintaining	heap	data	structures
§ Padding	for	alignment	purposes
§ Explicit	policy	decisions	

(e.g.,	to	return	a	big	block	to	satisfy	a	small	request)

¢ Depends	only	on	the	pattern	of	previous requests
§ Thus,	easy	to	measure

Payload Internal	
fragmentation

Block

Internal	
fragmentation

14

External	Fragmentation
¢ Occurs	when	there	is	enough	aggregate	heap	memory,	

but	no	single	free	block	is	large	enough

¢ Depends	on	the	pattern	of	future	requests
§ Thus,	difficult	to	measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops!	(what	would	happen	now?)

15

Implementation	Issues:	the	5	Questions
1. Given	just	a	pointer,	how	much	memory	do	we	free?

2. How	do	we	keep	track	of	the	free	blocks?

3. When	allocating	a	structure	that	is	smaller	than	the	free	
block	it	is	placed	in,	what	do	we	do	with	the	extra	space?

4. How	do	we	pick	a	block	to	use	for	allocation?	(if	a	few	work)

5. How	do	we	reinsert	freed	block?

16

Q1:	Knowing	How	Much	to	Free
¢ Standard	method

§ Keep	the	length	of	a	block	in	the	word	preceding	the	block.
§ This	word	is	often	called	the	header	field or header

§ Requires	an	extra	word	for	every	allocated	block

p0 = malloc(4)

p0

free(p0)

block	size data

5

17

Q2:	Keeping	Track	of	Free	Blocks
¢ Method	1:	Implicit	list	using	length—links	all	blocks

¢ Method	2:	Explicit	list among	the	free	blocks	using	pointers

¢ Method	3:	Segregated	free	list
§ Different	free	lists	for	different	size	classes

¢ Method	4:	Blocks	sorted	by	size
§ Can	use	a	balanced	tree	(e.g.	Red-Black	tree)	with	pointers	within	each	

free	block,	and	the	length	used	as	a	key

5 4 26

5 4 26

18

Today
¢ Basic	concepts
¢ Implicit	free	lists
¢ Explicit	free	lists
¢ Segregated	free	lists

19

Method	1:	Implicit	List
¢ For	each	block	we	need	both	size	and	allocation	status

§ Could	store	this	information	in	two	words:	wasteful!

¢ Standard	trick
§ If	blocks	are	aligned,	some	low-order	address	bits	are	always	0
§ Instead	of	storing	an	always-0	bit,	use	it	as	a	allocated/free	flag
§ When	reading	size	word,	must	mask	out	this	bit

Size

1	word

Format	of
allocated	and
free	blocks

Payload

a	=	1: Allocated	block		
a	=	0: Free	block

Size:	block	size

Payload:	application	data
(allocated	blocks	only)

0	0	a

Optional
padding

31																														3		2		1		0	

20

Detailed	Implicit	Free	List	Example

Start	
of	
heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated	blocks:	shaded	grey
Free	blocks:	unshaded
Headers:	labeled	with	size	in	bytes/allocated	bit

Each	box	is	4	bytes.

21

Q4:	Implicit	List:	Finding	a	Free	Block
¢ First	fit:

§ Search	list	from	beginning,	choose	first free	block	that	fits:
§ Linear	time	in	total	number	of	blocks	(allocated	and	free)
§ Can	cause	“splinters”	(of	small	free	blocks)	at	beginning	of	list

¢ Next	fit:
§ Like	first	fit,	but	search	list	starting	where	previous	search	finished
§ Often	faster	than	first	fit:	avoids	re-scanning	unhelpful	blocks
§ Some	research	suggests	that	fragmentation	is	worse

¢ Best	fit:
§ Search	list,	choose	the	best free	block:	fits,	with	fewest	bytes	left	over
§ Keeps	fragments	small—usually	helps	fragmentation
§ Typically	runs	slower	than	first	fit

22

Q3:	Implicit	List:	Allocating	in	Free	Block
Suppose	we	need	to	allocate	3	words

This	is	our	free	block	of	choice

Two	options:	
1. Allocate	the	whole	block	(internal	fragmentation!)

2. Split	the	free	block

3 4 26

4 24

p

23

3 4 26

p

23

Q5:	Implicit	List:	Freeing	a	Block
¢ Simplest	implementation:	clear	the	“allocated”	flag

§ But	can	lead	to	“false	fragmentation”	

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

24

Implicit	List:	Coalescing
¢ Join	(coalesce)	with	next/previous	blocks,	if	they	are	free

§ Coalescing	with	next	block

How	do	we	coalesce	with	previous block?

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

25

Implicit	List:	Bidirectional	Coalescing	
¢ Boundary	tags [Knuth73]

§ Replicate	size/allocated	word	at	“bottom”	(end)	of	free	blocks
§ Allows	us	to	traverse	the	“list”	backwards,	but	requires	extra	space
§ Important	and	general	technique!

Size

Format	of
allocated	and
free	blocks

Payload	and
padding

a	=	1: Allocated	block		
a	=	0: Free	block

Size: Total	block	size

Payload: Application	data
(allocated	blocks	only)

a

Size aBoundary	tag
(footer)

4 4 4 4 6 46 4

Header

26

Constant	Time	Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block	being
freed

Case	1 Case	2 Case	3 Case	4

27

m1 1

Constant	Time	Coalescing	(Case	1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

28

m1 1

Constant	Time	Coalescing	(Case	2)

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 0

m2 0

29

m1 0

Constant	Time	Coalescing	(Case	3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

30

m1 0

Constant	Time	Coalescing	(Case	4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

31

Disadvantages	of	Boundary	Tags
¢ Internal	fragmentation

¢ Can	it	be	optimized?
§ Which	blocks	need	the	footer	tag?
§ What	does	that	mean?

32

Summary	of	Key	Allocator	Policies
¢ Placement	policy:

§ First-fit,	next-fit,	best-fit,	etc.
§ Tradeoffs:	throughput	vs.	fragmentation
§ Interesting	observation:	segregated	free	lists	(more	later)	approximate	

best	fit	placement	policy	without	searching	entire	free	list

¢ Splitting	policy:
§ When	do	we	go	ahead	and	split	free	blocks?
§ How	much	internal	fragmentation	are	we	willing	to	tolerate?

¢ Coalescing	policy:
§ Immediate	coalescing:	coalesce	each	time	free is	called	
§ Deferred	coalescing:	improve	performance	by	deferring	until	needed

§ Coalesce	as	you	scan	the	free	list	for	malloc
§ Coalesce	when	external	fragmentation	reaches	some	threshold

33

Implicit	Lists:	Summary
¢ Implementation:	very	simple
¢ Allocate	cost:	

§ linear	time	worst	case
¢ Free	cost:	

§ constant	time	worst	case
§ even	with	coalescing

¢ Memory	usage:	
§ will	depend	on	placement	policy	(First-fit,	next-fit	or	best-fit)

¢ Not	used	in	practice	for	malloc/free (too	slow)
§ used	in	many	special	purpose	applications

¢ Concepts	of	splitting	&	coalescing	are	general	to	all allocators

34

Today
¢ Basic	concepts
¢ Implicit	free	lists
¢ Explicit	free	lists
¢ Segregated	free	lists

35

Keeping	Track	of	Free	Blocks

5 4 26

5 4 26

¢ Method	1:	Implicit	free	list	using	length—links	all	blocks

¢ Method	2:	Explicit	free	list among	the	free	blocks	using	pointers

¢ Method	3:	Segregated	free	list
§ Different	free	lists	for	different	size	classes

¢ Method	4:	Blocks	sorted	by	size
§ Can	use	a	balanced	tree	(e.g.	Red-Black	tree)	with	pointers	within	each	

free	block,	and	the	length	used	as	a	key

36

Explicit	Free	Lists

¢ Maintain	list(s)	of	free blocks,	not	all blocks
§ “next”	free	block	could	be	anywhere

§ need	to	store	forward/back	pointers,	not	just	sizes
§ Still	need	boundary	tags	for	coalescing
§ Tracking	free	blocks	à can	use	payload	area

Size

Payload	and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated	(as	before) Free

37

Explicit	Free	Lists
¢ Logically:

¢ Physically:	blocks	can	be	in	any	order

A B C

4 4 4 4 66 44 4 4

Forward	
(next)	links

Back	(prev)	
links

A BC

38

Allocating	From	Explicit	Free	Lists

Before

After

= malloc(…)

(with	splitting)

conceptual	graphic

39

Freeing	With	Explicit	Free	Lists
¢ Insertion	policy:	Where	do	you	put	a	newly	freed	block?

§ LIFO	(last-in-first-out)	policy
§ Insert	freed	block	at	the	beginning	of	the	free	list
§ Pro: simple	and	constant	time
§ Con: studies	suggest	fragmentation	worse	than	addr-ordered

§ Address-ordered	policy
§ Insert	freed	blocks	so	free	list	blocks	always	in	address	order:	

addr(prev)	<	addr(curr)	<	addr(next)
§ Con: requires	search
§ Pro: studies	suggest	fragmentation	is	lower	than	LIFO

40

Freeing	With	a	LIFO	Policy	(Case	1)

¢ Insert	the	freed	block	at	the	root	of	the	list

/

free()

/

Free	
List
Root

Free	
List
Root

Before

After

conceptual	graphic

41

Freeing	With	a	LIFO	Policy	(Case	2)

¢ Splice	out	predecessor	block,	coalesce	both	memory	blocks,	
and	insert	the	new	block	at	the	root	of	the	list

/

free()

/

Free	
List
Root

Free	
List
Root

Before

After

conceptual	graphic

42

Freeing	With	a	LIFO	Policy	(Case	3)

¢ Splice	out	successor	block,	coalesce	both	memory	blocks	and	
insert	the	new	block	at	the	root	of	the	list

/

free()

/

Free	
List
Root

Free	
List
Root

Before

After

conceptual	graphic

43

Freeing	With	a	LIFO	Policy	(Case	4)

¢ Splice	out	predecessor	and	successor	blocks,	coalesce	all	3	
memory	blocks	and	insert	the	new	block	at	the	root	of	the	list

/

free()

/

Free	
List
Root

Free	
List
Root

Before

After

conceptual	graphic

44

Explicit	List	Summary
¢ Comparison	to	implicit	list:

§ Allocate:	linear	in	number	of	free blocks	(instead	of	all blocks)
§ Much	faster	when	most	of	the	memory	is	full	

§ more	complicated	allocate/free	(needs	to	splice	blocks	in/out	of	list)
§ extra	space	for	the	links	(2	extra		words	needed	for	each	block)

§ Does	this	increase	internal	fragmentation?

¢ Most	common	use	of	linked	lists	is	in	conjunction	with	
segregated	free	lists
§ Keep	multiple	linked	lists	of	different	size	classes,	or	possibly	for	

different	types	of	objects

45

Keeping	Track	of	Free	Blocks
¢ Method	1:	Implicit	list	using	length—links	all	blocks

¢ Method	2:	Explicit	list among	the	free	blocks	using	pointers

¢ Method	3:	Segregated	free	list
§ Different	free	lists	for	different	size	classes

¢ Method	4:	Blocks	sorted	by	size
§ Can	use	a	balanced	tree	(e.g.	Red-Black	tree)	with	pointers	within	each	

free	block,	and	the	length	used	as	a	key

5 4 26

5 4 26

46

Today
¢ Basic	concepts
¢ Implicit	free	lists
¢ Explicit	free	lists
¢ Segregated	free	lists

47

Segregated	List	(Seglist)	Allocators
¢ Each	size	class of	blocks	has	its	own	free	list

¢ Often	have	separate	classes	for	each	small	size
¢ For	larger	sizes:	One	class	for	each	two-power	size

1-2

3

4

5-8

9-inf

48

Seglist	Allocator
¢ Given	an	array	of	free	lists,	each	one	for	some	size	class

¢ To	allocate	a	block	of	size	n:
§ Search	appropriate	free	list	for	block	of	size	m	>	n
§ If	found: split	block,	optionally	place	fragment	on	appropriate	list
§ If	no	block	is	found,	try	next	larger	class
§ Repeat	until	block	is	found

¢ If	no	block	found:
§ Real	World:

§ Request	additional	heap	memory	from	OS	(using	sbrk())
§ Allocate	block	of	n bytes	from	new	memory
§ Place	remainder	as	a	single	free	block	in	largest	size	class

§ CS	3410,	Project	4:
§ Return	NULL

49

Seglist Allocator	(cont.)
¢ To	free	a	block:

§ Coalesce	and	place	on	appropriate	list	(optional)

¢ Advantages	of	seglist allocators
§ Higher	throughput

§ log	time	for	power-of-two	size	classes
§ Better	memory	utilization

§ First-fit	search	of	segregated	free	list	approximates	a	best-fit	
search	of	entire	heap

§ Extreme	case:	giving	each	block	its	own	size	class	is	equivalent	to	
best-fit

50

More	Info	on	Allocators

¢ Bryant	&	O’Hallaron,	“Computer	Systems:	A	Programmer's	
Perspective”		Sections	9.9-9.13
§ A	great	book	about	System	Software

¢ D.	Knuth,	“The	Art	of	Computer	Programming”,	2nd edition,	
Addison	Wesley,	1973
§ The	classic	reference	on	dynamic	storage	allocation

¢ Wilson	et	al,	“Dynamic	Storage	Allocation:	A	Survey	and	
Critical	Review”,	Proc.	1995	Int’l	Workshop	on	Memory	
Management,	Kinross,	Scotland,	Sept,	1995.
§ Comprehensive	survey
§ Available	from	CS:APP	student	site	(csapp.cs.cmu.edu)

