
Anne	Bracy
CS	3410

Computer	Science
Cornell	University

P&H	Chapter 4.9,	pages	445–452,	appendix	A.7

The slides were originally created by Deniz ALTINBUKEN.

• Manages	all	of	the	software	and	hardware	
on	the	computer

• Many	processes	running	at	the	same	time,	
requiring	resources
• CPU,	Memory,	Storage,	etc.

• The	Operating	System	multiplexes these	
resources	amongst	different	processes,	
and	isolates and	protects processes	from	
one	another!

6

• Operating	System	(OS)	is	a	trusted	mediator:
• Safe	control	transfer	between	processes
• Isolation	(memory,	registers)	of	processes

7

P1 P2 P3 P4

VM filesystem net

driver driver

untrusted

disk network
card

MMU CPU

trusted
software

hardware

OS

You	are	what	you	execute.

Personalities:
hailstone_recursive
Microsoft	Word
Minecraft
Linux	ß yes,	this	is	just	software	like	

every	other	program	
that	runs	on	the	CPU

Are	they	all	equal?
8

Brain

• Only	trusted processes	should	access	&	
change	important	things
• Editing	TLB,	Page	Tables,	OS	code,	OS	$sp,	

OS	$fp…

• If	an	untrusted process	could	change	the	
OS’	$sp/$fp/$gp/etc.,	OS	would	crash!

9

CPU	Mode	Bit	in Process	Status	Register
• Many	bits	about	the	current	process
• Mode	bit	is	just	one	of	them

• Mode	bit:	
• 0	=	user	mode	=	untrusted:	
“Privileged”	instructions	and	registers	are	
disabled	by	CPU

• 1	=	kernel	mode	=	trusted
All	instructions	and	registers	are	enabled

10

1. Boot	sequence
• load	first	sector	of	disk	(containing	OS	code)	to	
predetermined	address	in	memory

• Mode	ß 1;	PC	ß predetermined	address

2.			OS	takes	over
• initializes	devices,	MMU,	timers,	etc.
• loads	programs	from	disk,	sets	up	page	tables,	etc.
• Mode	ß 0;	PC	ß program	entry	point

– User	programs	regularly	yield	control	back	to	OS

11

If	an	untrusted	process	does	not	have	privileges	to	
use	system	resources,	how	can	it

• Use	the	screen	to	print?
• Send	message	on	the	network?
• Allocate	pages?
• Schedule	processes?

Solution:	System	Calls

12

putc(): Print	character	to	screen
• Need	to	multiplex	screen	between	competing	
processes

send(): Send	a	packet	on	the	network
• Need	to	manipulate	the	internals	of	a	device	

sbrk(): Allocate	a	page
• Needs	to	update	page	tables	&	MMU

sleep(): put	current	prog to	sleep,	wake	other
• Need	to	update	page	table	base	register

13

System	call:	Not	just	a	function	call
• Don’t	let	process	jump	just	anywhere	in	OS	code
• OS	can’t	trust	process’	registers	(sp,	fp,	gp,	etc.)

SYSCALL	instruction: safe	control	transfer	to	OS

MIPS	system	call	convention:
• Exception	handler	saves	temp	regs,	saves	ra,	…
• $v0	=	system	call	number,	which	specifies	the	
operation	the	application	is	requesting

14

Compilers	do	not	emit	SYSCALL	instructions
• Compiler	doesn’t	know	OS	interface

Libraries	implement	standard	API	from	system	API
libc (standard	C	library):
• gets()	à getc()
• getc()	à syscall
• sbrk()	à syscall
• printf()	àwrite()
• write()	à syscall
• malloc()	à sbrk()
• …

15

char *gets(char *buf) {
while (...) {
buf[i] = getc();

}
}

int getc() {
asm("addiu $v0, $0, 4");
asm("syscall");

}

16

17

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system	reserved

stack

system	reserved

code	(text)					

static	data

dynamic	data	(heap)

gets
getc

??

In	its	own	address	space?
– Syscall	has	to	switch	to	a	different	address	space
– Hard	to	support	syscall	arguments	passed	as	pointers
.	.	.	So,	NOPE

In	the	same	address	space	as	the	user	process?
• Protection	bits	prevent	user	code	from	writing	kernel
• Higher	part	of	virtual	memory
• Lower	part	of	physical	memory
.	.	.	Yes,	this	is	how	we	do	it.

18

All	kernel	text	&	most	data:
• At	same	virtual	address	in	

every	address	space

OS	is	omnipresent,	available	to	
help	user-level	applications
• Typically	in	high	memory

19Virtual	Memory

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

stack

system	reserved

code	(text)

static	data

dynamic	data	(heap)

OS	Heap
OS	Data

OS	Stack

OS	Text

20Virtual	Memory

OS	Text
OS	Data
OS	Heap

OS	Stack

Physical	Memory

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

stack

system	reserved

code	(text)

static	data

dynamic	data	(heap)

OS	Heap
OS	Data

OS	Stack

OS	Text

0x00...00

21

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system	reserved

stack

system	reserved

code	(text)					

static	data

dynamic	data	(heap)

gets
getc

implementation of
getc() syscall

Which	statement	is	FALSE?

A) OS	manages	the	CPU,	Memory,	Devices,	and	
Storage.

B) OS	provides	a	consistent	API	to	be	used	by	other	
processes.

C) The	OS	kernel	is	always	present	on	Disk.
D) The	OS	kernel	is	always	present	in	Memory.
E) Any	process	can	fetch	and	execute	OS	code	in	

user	mode.

22

SYSCALL instruction	does	an	atomic	jump	to	a	
controlled	location	(i.e.	MIPS	0x8000	0180)
• Switches	the	sp to	the	kernel	stack
• Saves	the	old	(user)	SP	value
• Saves	the	old	(user)	PC	value	(=	return	address)
• Saves	the	old	privilege	mode
• Sets	the	new	privilege	mode	to	1
• Sets	the	new	PC	to	the	kernel	syscall	handler

24

Kernel	system	call	handler	carries	out	the	desired	
system	call
• Saves	callee-save	registers
• Examines	the	syscall	number
• Checks	arguments	for	sanity
• Performs	operation
• Stores	result	in	v0
• Restores	callee-save	registers
• Performs	a	“return	from	syscall”	(ERET)	instruction,	
which	restores	the	privilege	mode,	SP	and	PC

25

Anything	that	isn’t	a	user	program	executing	its	
own	user-level	instructions.

System	Calls:
• just	one	type	of	exceptional	control	flow
• Process	requesting	a	service	from	the	OS
• Intentional	– it’s	in	the	executable!

26

27

Trap
Intentional
Examples:
System call

(OS performs service)
Breakpoint traps
Privileged instructions

Abort
Unintentional
Not recoverable
Examples:
Parity error

Fault
Unintentional but
Possibly recoverable
Examples:
Division by zero
Page fault

One	of	many ontology	/	terminology	trees.

Exception	program	counter	(EPC)
• 32-bit	register,	holds	addr of	affected	instruction
• Syscall	case:	Address	of	SYSCALL

Cause	register
• Register	to	hold	the	cause	of	the	exception
• Syscall	case:	8,	Sys

Special	instructions	to	load	TLB	
• Only	do-able	by	kernel

28

Precise
Hardware	guarantees
• Previous	instructions	complete
• Later	instructions	are	flushed
• EPC	and	cause	register	are	set
• Jump	to	prearranged	address	in	OS
• When	you	come	back,	restart instruction

• Disable	exceptions	while	responding	to	one
– Otherwise	can	overwrite	EPC	and	cause

29

30

Hardware interrupts
Asynchronous
= caused by events
external to CPU

Software exceptions
Synchronous
= caused by CPU
executing an instruction

Maskable
Can be turned off by CPU
Example: alert from network device
that a packet just arrived, clock
notifying CPU of clock tick

Unmaskable
Cannot be ignored
Example: alert from the
power supply that electricity
is about to go out

AKA Exceptions

No	SYSCALL instruction.	Hardware steps	in:
• Saves	PC	of	exception	instruction	(EPC)	
• Saves	cause	of	the	interrupt/privilege	(Cause	register)
• Switches	the	sp to	the	kernel	stack
• Saves	the	old	(user)	SP	value
• Saves	the	old	(user)	PC	value
• Saves	the	old	privilege	mode
• Sets	the	new	privilege	mode	to	1
• Sets	the	new	PC	to	the	kernel	syscall	hander	
interrupt/exception	handler

31

SYSCALL

32

Kernel	system	call	handler	carries	out	system	call
all

• Saves	callee-save	registers
• Examines	the	syscall	number			cause
• Checks	arguments	for	sanity
• Performs	operation
• Stores	result	in	v0
• Restores	callee-save	registers
• Performs	a	ERET	instruction	(restores	the	privilege	
mode,	SP	and	PC)

interrupt/exception	handler	handles	event

all

What	other	task	requires	both	Hardware	and	
Software?

A) Virtual	to	Physical	Address	Translation
B) Branching	and	Jumping
C)	Clearing	the	contents	of	a	register
D)	Pipelining	instructions	in	the	CPU
E)	What	are	we	even	talking	about?

33

Virtual	à physical	address	translation!
Hardware
• has	a	concept	of	operating	in	physical	or	virtual	mode
• helps	manage	the	TLB
• raises	page	faults
• keeps	Page	Table	Base	Register	(PTBR)	and	ProcessID
Software/OS
• manages	Page	Table	storage
• handles	Page	Faults
• updates	Dirty	and	Reference	bits	in	the	Page	Tables
• keeps	TLB	valid	on	context	switch:

• Flush	TLB	when	new	process	runs	(x86)
• Store	process	id	(MIPS)

35

I/O	Devices:	monitor,	disk,	keyboard,	network,	
mouse,	etc.

36Display

Keyboard

Network

Disk

Modern	systems	separate	high-performance	processor,	
memory,	display	interconnect	from	lower-performance	
interconnect

Core0
Cache

Memory
Controller

I/O
Controller

High	Performance
Interconnect

Core1
Cache

Memory

Display

I/O
Controller

Disk

I/O
Controller

Keyboard

I/O
Controller

Network

Lower	Performance
Legacy	Interconnect

Aside:	Memory-Mapped	I/O

Physical
Address	
SpaceVirtual

Address	
Space

0xFFFF	FFFF

0x00FF	FFFF

0x0000	0000 0x0000	0000

Display

Disk

Keyboard

Network

I/O
Controller

I/O
Controller

I/O
Controller

I/O
Controller

Less-favored	alternative	=	Programmed	I/O:
• Syscall	instructions	that	communicate	with	I/O
• Communicate	via	special	device	registers

Programmed	I/O
• Requires	special	instructions
• Can	require	dedicated	hardware	interface	to	devices
• Protection	enforced	via	kernel	mode	access	to	instructions
• Virtualization	can	be	difficult

Memory-Mapped	I/O
• Re-uses	standard	load/store	instructions
• Re-uses	standard	memory	hardware	interface
• Protection	enforced	with	normal	memory	protection	scheme
• Virtualization	enabled	with	normal	memory	virtualization	
scheme

How	does	program	learn	device	is	ready/done?
1.	Polling: Periodically	check	I/O	status	register

• Common	in	small,	cheap,	or	real-time	embedded	systems
+ Predictable	timing,	inexpensive
– Wastes	CPU	cycles

2.	Interrupts: Device	sends	interrupt	to	CPU
• Cause	register	identifies	the	interrupting	device
• Interrupt	handler	examines	device,	decides	what	to	do
+ Only	interrupt	when	device	ready/done
– Forced	to	save	CPU	context	(PC,	SP,	registers,	etc.)
– Unpredictable,	event	arrival	depends	on	other	devices’	activity

Which	one	is	the	winner?	Which	one	is	the	loser?

1.	Programmed	I/O:		Device	ßà CPU	ßà RAM
for	(i =	1	..	n)
• CPU	issues	read	request
• Device	puts	data	on	bus
&	CPU	reads	into	registers

• CPU	writes	data	to	memory

2.	Direct	Memory	Access	(DMA):		Device	ßà RAM
• CPU	sets	up	DMA	request
• for	(i =	1	...	n)

Device	puts	data	on	bus
&	RAM	accepts	it

• Device	interrupts	CPU	after	done

CPU RAM

DISK

CPU RAM

DISK

Which	one	is	the	winner?	Which	one	is	the	loser?

Diverse	I/O	devices	require	hierarchical	interconnect	
which	is	more	recently	transitioning	to	point-to-point	
topologies.

Memory-mapped	I/O	is	an	elegant	technique	to	
read/write	device	registers	with	standard	load/stores.

Interrupt-based	I/O	avoids	the	wasted	work	in
polling-based	I/O	and	is	usually	more	efficient.

Modern	systems	combine	memory-mapped	I/O,
interrupt-based	I/O,	and	direct-memory	access
to	create	sophisticated	I/O	device	subsystems.

