
Virtual	Memory

Anne	Bracy
CS	3410

Computer	Science
Cornell	University

P	&	H	Chapter	5.7

The slides are the product of many rounds of teaching CS 3410 by 
Professors Weatherspoon, Bala, Bracy, McKee, and Sirer.



Picture	Memory	as…	?

addr data
0xffffffff xaa

…	
…
x00

x00
xef
xcd
xab
xff

0x00000000 x00

Byte Array:
0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000

system
reserved

stack

system
reserved

text

data

heap

Segments:

0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

page	0

Page	Array:

page	1

page	2

.	.	.

.	.	.

page	n

0x00002000

0x00004000

0xffffd000

2



A	Little	More	About	Pages
Suppose	each	page	=	4KB

Anything	in	page	2	has	address:	
0x00002xxx

Lower	12	bits	specify	which	byte	
you	are	in	the	page:

0x00002200 = 0010 0000 0000 
= byte 512

upper	bits	=	page	number
lower	bits	=		page	offset

Sound	familiar?
0x00000000

0xffffe000

0xfffff000

0x00003000

0x00001000

Page	Array:

…

4KB

0x00002000

0x00004000

0xffffd000

3



Data	Granularity
ISA: instruction	specific:	LB,	LH,	LW	(MIPS)
Registers: 32	bits	(MIPS)
Caches: cache	line/block

Address	bits	divided	into:
index: which	entry	in	the	cache
tag: sanity	check	for	address	match
offset:	which	byte	in	the	line

Memory: page
Address	bits	divided	into:
page	number: which	page	in	memory
index:	which	byte	in	the	page

4



These	assumptions	are	embedded	
in	the	executable!

If	they	are	wrong,	things	will	break!
Recompile?	Relink?

Program’s	View	of	Memory
32-bit	machine:

0x00000000	– 0xffffffff to	play	with	
(modulo	system	reserved)

2	Interesting/Dubious	Assumptions:
The	machine	I’m	running	on	has	4GB	of	DRAM.
I	am	the	only	one	using	this	DRAM.

5



Indirection*	to	the	Rescue!
Virtual	Memory:	a Solution	for	All	Problems

• Each	process has	its	own	virtual	address	space
§ Program/CPU	can	access	any	address	from	0…2N
§ A	process	is	a	program	being	executed
§ Programmer	can	code	as	if	they	own	all	of	memory

• On-the-fly	at	runtime,	for	each	memory	access
§ all	accesses	are	indirect through	a	virtual	address
§ translate	fake	virtual	address	to	a	real	physical	address
§ redirect	load/store	to	the	physical	address

*google	David	Wheeler,	Butler	Lampson,	Leslie	Lamport,	and	Steve	Bellovin

6



Virtual	vs.	Physical	Address	Spaces

A
B
C

C
B

A

Program	#1’s
Virtual	Address

Space

Physical	
Address	
Space

Memory	
(DRAM)

D
D

Address	
Translation

DISK

A
B
C
D

Program	#2’s
Virtual	Address

Space

AB

C

D

• Not	contiguous
• Page	vs.	Address?

3
2
1
0

9
8
7
6
5
4
3
2
1
0

3
2
1
0

page page

page

7



Advantages	of	Virtual	Memory
Easy	relocation
• Loader	puts	code	anywhere	in	physical	memory
• Virtual	mappings	to	give	illusion	of	correct	layout
Higher	memory	utilization
• Provide	illusion	of	contiguous	memory
• Use	all	physical	memory,	even	physical	address	0x0
Easy	sharing
• Different	mappings	for	different	programs	/	cores

And	more	to	come…

8



Virtual	Memory	Agenda
What	is	Virtual	Memory?
How	does	Virtual	memory	Work?
• Address	Translation
• Overhead
• Paging
• Performance
• Virtual	Memory	&	Caches

9



Address	Translator:	MMU
• Programs	use	virtual	
addresses

• Actual	memory	uses	
physical	addresses

Memory	Management	
Unit	(MMU)

• HW	structure
• Translates	virtual	à
physical address				
on	the	fly

A
B
C

Program	#1

D

A
B
C
D

Program	#2

C
B

A

Physical	
Address	
Space

Memory	
(DRAM)

MMU

B

C

D

3
2
1
0

9
8
7
6
5
4
3
2
1
03

2
1
0

10



Address	Translation:	in	Page	Table
OS-ManagedMapping	of	Virtual	à Physical	Pages

int page_table[220] = {	0,	5,	4,	1,	… };
. . .

ppn = page_table[vpn];

Remember:	
any	address	0x00001234
is	x234 bytes	into	Page	C
both	virtual	&	physical
VP	1	à PP	5

C
B

A

Physical
Address
Space

A
B
C
D

3
2
1
0

Program’s
Virtual	Address

Space

9
8
7
6
5
4
3
2
1
0

Assuming	each	page	=	4KB
11



Rowan	Atkinson	Live	YouTube	Channel 12



Page	Table	Basics
1	Page	Table	per	process
Lives	in	Memory,	i.e.	in	a	page	(or	more…)
Location	stored	in	Page	Table	Base	Register

Part	of	program	state	(like	PC)

C
B

A

Physical
Address
Space

A
B
C
D

3
2
1
0

Program’s
Virtual	Address

Space

9
8
7
6
5
4
3
2
1
0

PTBR 0x00008000
Assuming	each	page	=	4KB

.	.	.

00000001
00000004
00000005
000000000x00008000

0x00008004
0x00008008
0x0000800c

0x00008FFF

13



Simple	Address	Translation
0x 1111 2222 3333 4444 5555 BBBB CCCC DDDD

Assuming	each	page	=	4KB

Page	OffsetVirtual	Page	Number

Lookup	in	Page	Table

0x 5555 6666 7777 8888 9999 BBBB CCCC DDDD

Physical	Page	Number Page	Offset

14



Simple	Page	Table	Translation

Memory
PTBR 0x90000000

Assuming	each	page	=	4KB

0x10045

.	.	.

0xC20A3
0x4123B
0x10044
0x000000x90000000

0x90000004
0x90000008
0x9000000c

0x00008FFF

0x00000000

0x90000000

0x10045000

0xC20A3000

0x10044000

0x4123B000

0x00002 0xABCvaddr
0111231

0x4123B 0xABCpaddr

15



General	Address	Translation
• What	if	the	page	size	is	not	4KB?

à Page	offset	is	no	longer	12	bits

Clicker	Question:	
Page	size	is	16KB	à how	many	bits	is	page	offset?
(a)	12	 (b)	13 (c)	14 (d)	15 (e)	16

• What	if	Main	Memory	is	not	4GB?
à Physical	page	number	is	no	longer	20	bits

Clicker	Question:	
Page	size	4KB,	Main	Memory	512	MB	

à how	many	bits	is	PPN?
(a)	15	 (b)	16 (c)	17 (d)	18 (e)	19

16



Virtual	Memory	Agenda
What	is	Virtual	Memory?
How	does	Virtual	memory	Work?
• Address	Translation
• Overhead
• Paging
• Performance
• Virtual	Memory	&	Caches

17



Page	Table	Overhead
• How	large	is	PageTable?
• Virtual	address	space	(for	each	process):

§ Given:	total	virtual	memory:	232 bytes	=	4GB
§ Given:	page	size:	212 bytes	=	4KB
§ #	entries	in	PageTable?
§ size	of	PageTable?
§ This	is	one,	big	contiguous	array,	by	the	way!

• Physical	address	space:
§ Given:	total	physical	memory:	229 bytes	=	512MB
§ overhead	for	10	processes?

18



Page	Table	Overhead
• How	large	is	PageTable?
• Virtual	address	space	(for	each	process):

§ Given:	total	virtual	memory:	232 bytes	=	4GB
§ Given:	page	size:	212 bytes	=	4KB
§ #	entries	in	PageTable?
§ size	of	PageTable?

• Physical	address	space:
§ total	physical	memory:	229 bytes	=	512MB
§ overhead	for	10	processes?

220 =	1	million	entries
PTE	size	=	4	bytes
àPageTable size	=	4	x	220 =	4MB

10	x	4MB	=	40	MB	of	overhead!
• 40	MB	/512	MB	=	7.8%	overhead,	
space	due	to	PageTable 19



But	Wait...	There’s	more!
• Page	Table	Entry	won’t	be	just	an	integer
• Meta-Data

§ Valid	Bits
• What	PPN	means	“not	mapped”? No	such	number…
• At	first: not	all	virtual	pages	will	be	in	physical	memory
• Later:might	not	have	enough	physical	memory	to	map	
all	virtual	pages

§ Page	Permissions
• R/W/X	permission	bits	for	each	PTE
• Code: read-only,	executable
• Data: writeable,	not	executable

20



Less	Simple	Page	Table
V R W X

Physical	Page	
Number

0
1 1 1 0 0xC20A3
0
0
1 1 0 0 0xC20A3
1 0x4123B
1 0x10044
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

0x10044000

Process	tries	to	access	a	page	without	
proper	permissions

Segmentation	Fault
Example:
Write	to	read-only?	à process	killed

21



Now	how	big	is	this	Page	Table?
struct pte_t page_table[220]
Each PTE = 8 bytes
How	many	pages	in	memory	will	the	page	table	
take	up?

Clicker	Question: (a)	4	million	(222)	pages
(b)	2048	(211)	pages
(c)	1024	(210)	pages
(d)	4	billion	(232)	pages
(e)	4K	(212)	pages

Assuming	each	page	=	4KB
22



Wait,	how	big	is	this	Page	Table?
page_table[220] = 8x220 =223 bytes

(Page Table = 8 MB in size)

How	many	pages	in	memory	will	the	page	table	
take	up?	 223 /212 =211 2K pages!

Clicker	Question: (a)	4	million	(222)	pages
(b)	2048	(211)	pages
(c)	1024	(210)	pages
(d)	4	billion	(232)	pages
(e)	4K	(212)	pages

Assuming	each	page	=	4KB
23



Multi-Level	Page	Table
10	bits

PTBR

10	bits 10	bits vaddr

PDEntry

Page	Directory

Page	Table

PTEntry
Page

Word

2

*	Indirection	to	the	Rescue,	AGAIN!

31																				22 21																		12		11																					2	1	0	

PPN

Also	referred	to	as	
Level	1	and	Level	2	

Page	Tables24



Multi-Level	Page	Table
Doesn’t	this	take	up	more	memory	than	before?

Benefits
• Don’t	need	4MB	contiguous	physical	memory
• Don’t	need	to	allocate	every	PageTable,	only	

those	containing	valid	PTEs

Drawbacks
• Performance:	Longer	lookups

25



Virtual	Memory	Agenda
What	is	Virtual	Memory?
How	does	Virtual	memory	Work?
• Address	Translation
• Overhead
• Paging
• Performance
• Virtual	Memory	&	Caches

26



Paging
What	if	process	requirements	>	physical	memory?

Virtual	starts	earning	its	name

Memory	acts	as	a	cache	for	secondary	storage	(disk)
§ Swap	memory	pages	out	to	disk	when	not	in	use
§ Page	them	back	in	when	needed

Courtesy	of	Temporal	&	Spatial	Locality	(again!)
§ Pages	used	recently	mostly	likely	to	be	used	again

More	Meta-Data:
• Dirty	Bit,	Recently	Used,	etc.
• OS	may	access	this	meta-data	to	choose	a	victim

27



Paging

Example:	accessing	address	
beginning	with	0x00003
(PageTable[3])	results	in	a	Page	
Fault	which	will	page	the	data	in	
from	disk	sector	200

V R W X D
Physical	Page	

Number
0 --
1 1 0 1 0 0x10045
0 --
0 --
0 0 disk	sector	200
0 0 disk	sector	25
1 1 1 0 1 0x00000
0 --

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

25
200

28



Page	Fault
Valid	bit	in	Page	Table	=	0	
àmeans	page	is	not	in	memory

OS	takes	over:
• Choose	a	physical	page	to	replace

§ “Working	set”:	refined	LRU,	tracks	page	usage
• If	dirty,	write	to	disk
• Read	missing	page	from	disk

§ Takes	so	long	(~10ms),	OS	schedules	another	task

Performance-wise	page	faults	are	really	bad!

29



Virtual	Memory	Agenda
What	is	Virtual	Memory?
How	does	Virtual	memory	Work?
• Address	Translation
• Overhead
• Paging
• Performance
• Virtual	Memory	&	Caches

30



Watch	Your	Performance	Tank!
For	every	instruction:
• MMU	translates	address	(virtual	à physical)

§ Uses	PTBR	to	find	Page	Table	in	memory
§ Looks	up	entry	for	that	virtual	page

• Fetch	the	instruction	using	physical	address
§ Access	Memory	Hierarchy	(I$	à L2	àMemory)

• Repeat	at	Memory	stage	for	load/store	insns
§ Translate	address
§ Now	you	perform	the	load/store

31



Translation	Lookaside Buffer	(TLB)
• Small,	fast	cache	
• Holds	VPNàPPN	translations
• Exploints temporal	locality	in	pagetable
• TLB	Hit:	huge	performance	savings
• TLB	Miss:	invoke	TLB	miss	handler

• Put	translation	in	TLB	for	later

VPN PPN
VPN PPN
VPN PPN

“tag” “data”CPU

VA

PA

VA

PA
MMU TLB

VA

32



TLB	Parameters
Typical
• very	small	(64	– 256	entries)	à very	fast
• fully	associative,	or	at	least	set	associative
• tiny	block	size:	why?

Example:	Intel	Nehalem	TLB
• 128-entry	L1	Instruction	TLB,	4-way	LRU
• 64-entry	L1	Data	TLB,	4-way	LRU
• 512-entry	L2	Unified	TLB,	4-way	LRU

33



TLB to	the	Rescue!
For	every	instruction:
• Translate	the	address	(virtual	à physical)

§ CPU	checks	TLB
§ That	failing,	walk	the	Page	Table

• Use	PTBR	to	find	Page	Table	in	memory
• Look	up	entry	for	that	virtual	page
• Cache	the	result	in	the	TLB

• Fetch	the	instruction	using	physical	address
§ Access	Memory	Hierarchy	(I$	à L2	àMemory)

• Repeat	at	Memory	stage	for	load/store	insns
§ CPU	checks	TLB,	translate	if	necessary
§ Now	perform	load/store

34



Virtual	Memory	Agenda
What	is	Virtual	Memory?
How	does	Virtual	memory	Work?
• Address	Translation
• Overhead
• Paging
• Performance
• Virtual	Memory	&	Caches
• Caches	use	physical	addresses
• Prevents	sharing	except	when	intended
• Works	beautifully!

35



yes

Translation	in	Action

Next	Topic:
Exceptional	Control	Flow

Virtual	Address

TLB	Access

TLB	
Hit?

no

Physical	
Address

$	Access

$
Hit?

yes

no

deliver	
Data	back	
to	CPU

DRAM	
Access

DRAM
Hit?

yesno
36



Takeaways
Need	a	map	to	translate	a	“fake”	virtual	address	(from	process)	to	a	
“real”	physical	Address	(in	memory).

The	map	is	a	Page	Table: ppn = PageTable[vpn]

A	page	is	constant	size	block	of	virtual	memory.		Often	~4KB	to	reduce	
the	number	of	entries	in	a	PageTable.	

Page	Table	can	enforce	Read/Write/Execute	permissions	on	a	per	page	
basis.		Can	allocate	memory	on	a	per	page	basis.		Also	need	a	valid	bit,	
and	a	few	others.

Space	overhead	due	to	Page	Table	is	significant.	
Solution:	another	level	of	indirection!	
Two-level	of	Page	Table significantly	reduces	overhead.

Time	overhead	due	to	Address	Translations	also	significant.
Solution:	caching!		Translation	Lookaside Buffer	(TLB)	acts	as	a	cache	
for	the	Page	Table	and	significantly	improves	performance.	

37



November	1988:	Internet	Worm
• Internet	Worm	attacks	thousands	of	Internet	hosts
• Best	Wikipedia	quotes:
“According	to	its	creator,	the	Morris	worm	was	not	written	to	cause	
damage,	but	to	gauge	the	size	of	the	Internet.	The	worm	was	released	
from	MIT	to	disguise	the	fact	that	the	worm	originally	came	from	
Cornell.”
“The	worm	…determined	whether	to	invade	a	new	computer	by	asking	
whether	there	was	already	a	copy	running.	But	just	doing	this	would	
have	made	it	trivially	easy	to	kill:	everyone	could	run	a	process	that	
would	always	answer	"yes”.	To	compensate	for	this	possibility,	Morris	
directed	the	worm	to	copy	itself	even	if	the	response	is	"yes"	1	out	of	7	
times.	This	level	of	replication	proved	excessive,	and	the	worm	spread	
rapidly,	infecting	some	computers	multiple	times.	Morris	remarked,	
when	he	heard	of	the	mistake,	that	he	"should	have	tried	it	on	a	
simulator	first”.”

Computer	Virus	TV	News	Report	1988 38


