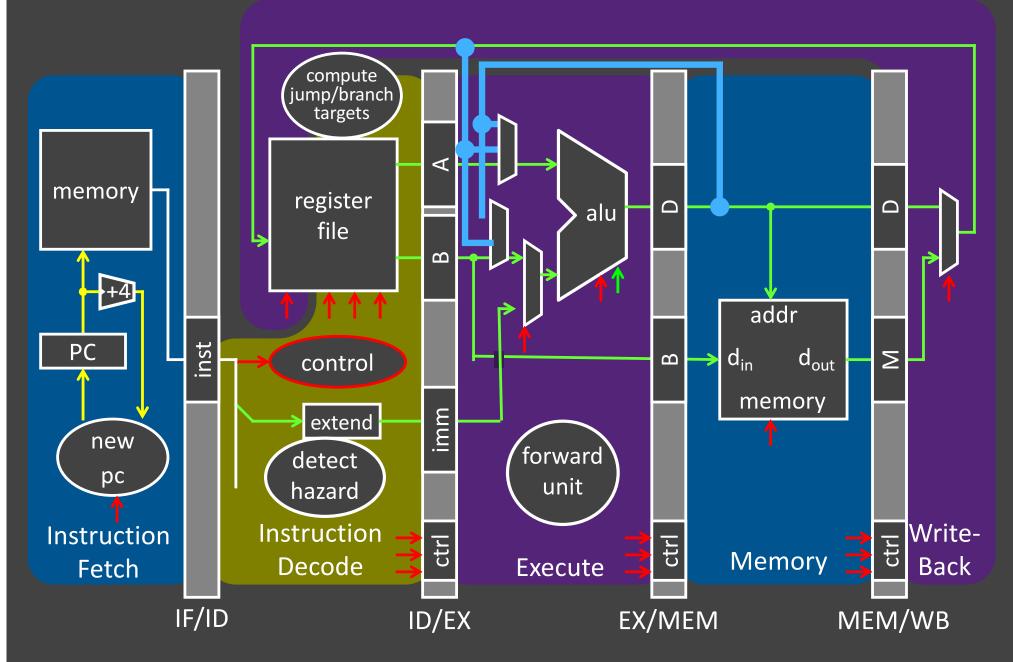
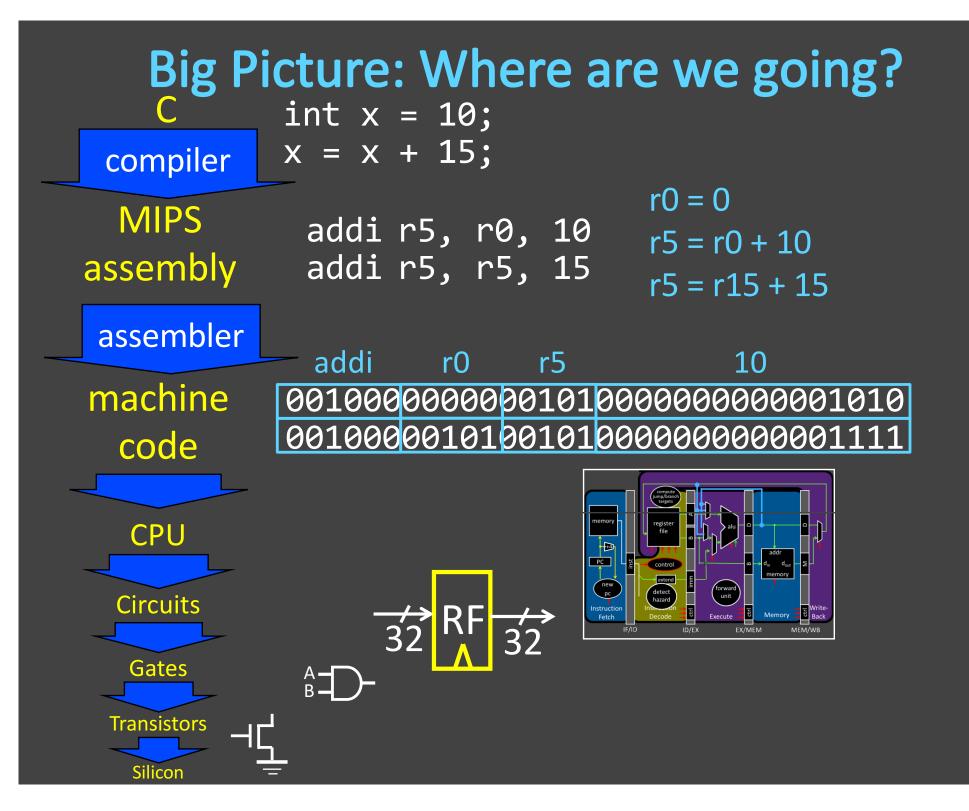
RISC, CISC, and ISA Variations

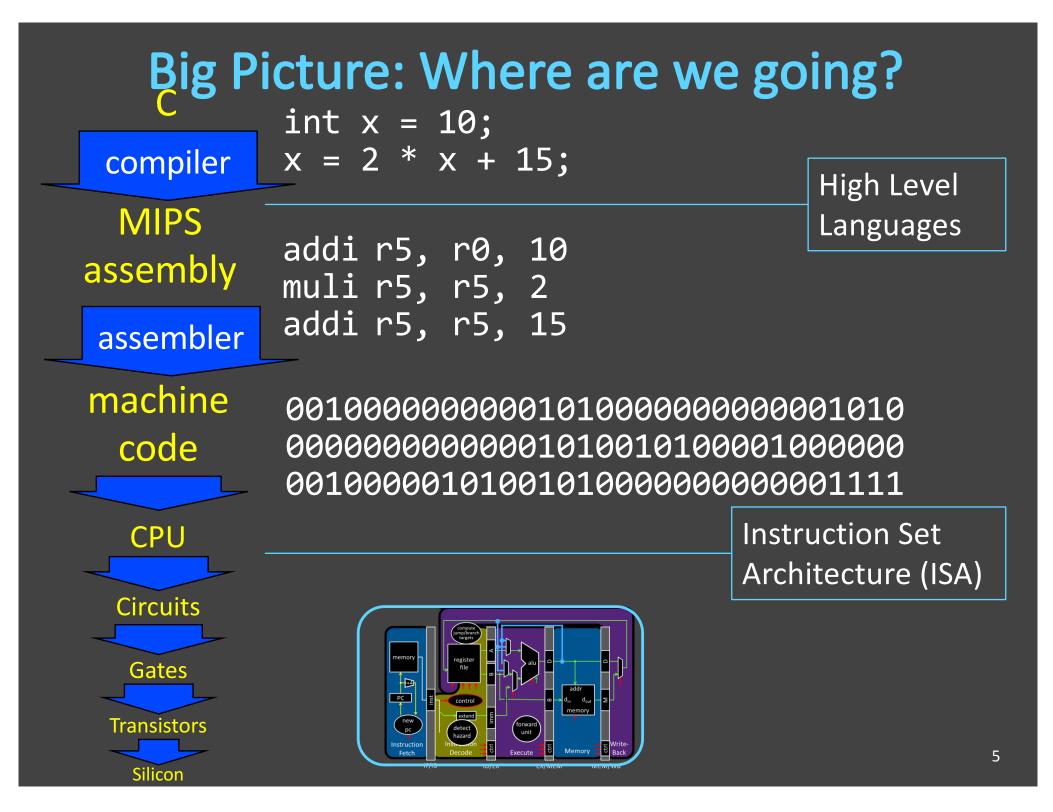
Anne Bracy CS 3410

Computer Science

Cornell University


The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, McKee, and Sirer.


iClicker Question


Which is **not** considered part of the ISA?

- A. There is a control delay slot.
- B. The number of inputs each instruction can have.
- C. Load-use stalls will **not** be detected by the processor.
- D. The number of cycles it takes to execute a multiply.
- E. Each instruction is encoded in 32 bits.

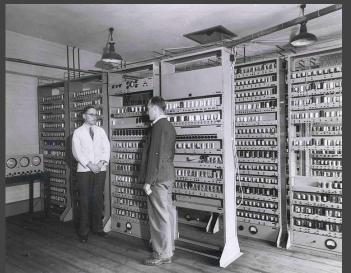
Big Picture: Where are we now?

Goals for Today

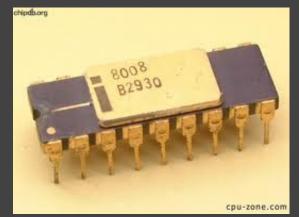
Instruction Set Architectures

- ISA Variations, and CISC vs RISC
- Peek inside some other ISAs:
 - X86
 - ARM

ISA Variations


ISA defines the permissible instructions

- MIPS: load/store, arithmetic, control flow, ...
- ARMv7: similar to MIPS, but more shift, memory, & conditional ops
- ARMv8 (64-bit): even closer to MIPS, no conditional ops
- VAX: arithmetic on memory or registers, strings, polynomial evaluation, stacks/queues, ...
- Cray: vector operations, ...
- x86: a little of everything


Brief Historical Perspective on ISAs

Accumulators

• Early stored-program computers had *one* register!

EDSAC (Electronic Delay Storage Automatic Calculator) in 1949

Intel 8008 in 1972 was an accumulator

- One register is two registers short of a MIPS insn!
- Requires a memory-based operand-addressing mode
 - Example: add 200 // ACC = ACC + Mem[200]

Brief Historical Perspective on ISAs

Next step: More Registers

- Dedicated registers
 - separate accumulators for multiply or divide instructions
- General-purpose registers
 - Registers can be used for any purpose
 - MIPS, ARM, x86
- *Register-memory* architectures
 - One operand may be in memory (e.g. accumulators)
 - x86 (i.e. 80386 processors)
- Register-register architectures (aka load-store)
 - All operands *must* be in registers
 - MIPS, ARM

ISAs are a product of current technology

of available registers plays huge role in ISA design

Machine	Num General Purpose Registers	Architectural Style	Year
EDSAC	1	Accumulator	1949
IBM 701	1	Accumulator	1953
CDC 6600	8	Load-Store	1963
IBM 360	18	Register-Memory	1964
DEC PDP-8	1	Accumulator	1965
DEC PDP-11	8	Register-Memory	1970
Intel 8008	1	Accumulator	1972
Motorola 6800	2	Accumulator	1974
DEC VAX	16	Register-Memory, Memory-Memory	1977
Intel 8086	1	Extended Accumulator	1978
Motorola 6800	16	Register-Memory	1980
Intel 80386	8	Register-Memory	1985
ARM	16	Load-Store	1985
MIPS	32	Load-Store	1985
HP PA-RISC	32	Load-Store	1986
SPARC	32	Load-Store	1987
PowerPC	32	Load-Store	1992
DEC Alpha	32	Load-Store	1992
HP/Intel IA-64	128	Load-Store	2001
AMD64 (EMT64)	16	Register-Memory	2003

In the Beginning...

People programmed in assembly and machine code!

- Needed as many addressing modes as possible
- Memory was (and still is) slow

CPUs had relatively few registers

- Register's were more "expensive" than external mem
- Large number of registers requires many bits to index

Memories were small

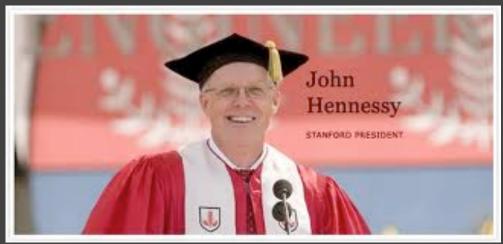
- Encouraged highly encoded microcodes as instructions
- Variable length instructions, load/store, conditions, etc

Reduced Instruction Set Computer (RISC)

John Cock

- IBM 801, 1980 (started in 1975)
- Name 801 came from the bldg that housed the project
- Idea: Possible to make a very small and very fast core
- Known as "the father of RISC Architecture"
- Turing Award Recipient and National Medal of Science

Reduced Instruction Set Computer (RISC)


Dave Patterson

- RISC Project, 1982
- UC Berkeley
- RISC-I: ½ transistors & 3x faster
- Influences: Sun SPARC, namesake of industry

John L. Hennessy

- MIPS, 1981
- Stanford
- Simple pipelining, keep full
- Influences: MIPS computer system, PlayStation, Nintendo

RISC vs. CISC

MIPS = Reduced Instruction Set Computer (RISC)

- ≈ 200 instructions, 32 bits each, 3 formats
- all operands in registers
 - almost all are 32 bits each
- ≈ 1 addressing mode: Mem[reg + imm]

x86 = Complex Instruction Set Computer (CISC)

- > 1000 instructions, 1 to 15 bytes each (*dozens of add instructions*)
- operands in dedicated registers, general purpose registers, memory, on stack, ...

- can be 1, 2, 4, 8 bytes, signed or unsigned

• 10s of addressing modes

– e.g. Mem[segment + reg + reg*scale + offset]

The **RISC** Tenets

RISC

- Single-cycle execution
- Hardwired control
- Load/store architecture
- Few memory addressing modes
- Fixed-length insn format
- Reliance on compiler
 optimizations
- Many registers (compilers are better at using them)

vs. CISC

- many multicycle operations
- microcoded multi-cycle operations
- register-mem and mem-mem
- many modes
- many formats and lengths
- hand assemble to get good performance
- few registers

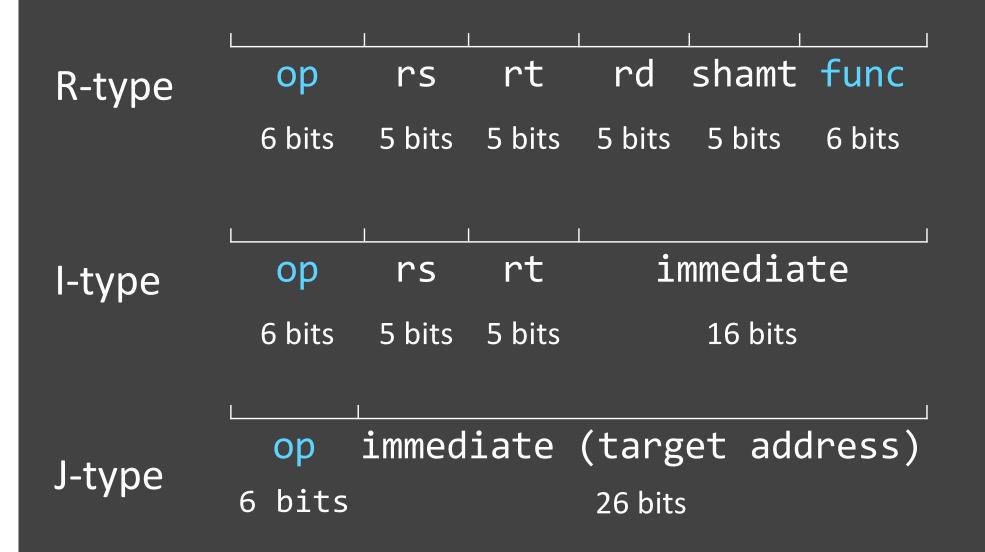
RISC vs CISC

RISC Philosophy Regularity & simplicity Leaner means faster Optimize common case

Energy efficiency Embedded Systems Phones/Tablets

CISC Rebuttal Compilers can be smart Transistors are plentiful Legacy is important Code size counts Micro-code! "RISC Inside"

Desktops/Servers

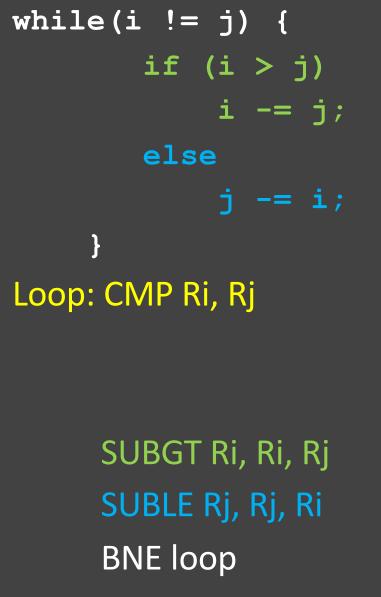

iClicker Question

What is one advantage of a CISC ISA?

- A. It naturally supports a faster clock.
- B. Instructions are easier to decode.
- C. The static footprint of the code will be smaller.
- D. The code is easier for a compiler to optimize.
- E. You have a lot of registers to use.

MIPS instruction formats

All MIPS instructions are 32 bits long, has 3 formats


ARMv7 instruction formats

All ARMv7 instructions are 32 bits long, has 3 formats

					1	I
R-type	орх	ор	rs	rd	орх	rt
	4 bits	8 bits	4 bits	4 bits	8 bits	4 bits
			1 1			I
I-type	орх	ор	rs	rd	immedia	te
	4 bits	8 bits	4 bits 4	bits	12 bits	
	L	1				I
J-type	орх	ор	imme	ediate	(target	address)
	4 bits	5 4 bit	S		24 bits	


MIPS Control Dependence while(i != j) { In MIPS, performance will be if (i > j) i -= j; slow if code has a lot of branches else j -= i; // if "NE" (not equal), stay in loop Loop: BEQ Ri, Rj, End SLT Rd, Rj, Ri // $(i > j) \rightarrow Rd=1$, $(i \le j) \rightarrow Rd=0$ BEQ Rd, RO, Else // Rd == 0 means (i \leq j) \rightarrow Else SUB Ri, Ri, Rj //i = i - i;J Loop Else: SUB Rj, Rj, Ri **3 NOP injections** J Loop due to delay slot End:

ARMv7 Conditional Instructions

ARM: avoid delays with conditional instructions

New: 1-bit condition registers (CR)

// set condition registers // Example: 4, 3 \rightarrow CR = 0101 // 5,5 \rightarrow CR = 1000 // i = i-j only if CR & 0001 != 0 // j = j-i only if CR & 1010 != 0000 // if "NE" (not equal), then loop

Control Independence!

ARMv7: Other Cool operations

Shift one register (e.g. Rc) any amount Add to another register (e.g. Rb) Store result in a different register (e.g. Ra)

ADD Ra, Rb, Rc LSL #4 Ra = Rb + Rc<4 Ra = Rb + Rc x 16 **ARMv7 Instruction Set Architecture**

All ARMv7 instructions are 32 bits long, has 3 formats

Reduced Instruction Set Computer (RISC) properties

- Only Load/Store instructions access memory
- Instructions operate on operands in processor registers
- 16 registers

Complex Instruction Set Computer (CISC) properties

- Autoincrement, autodecrement, PC-relative addressing
- Conditional execution
- Multiple words can be accessed from memory with a single instruction (SIMD: single instr multiple data)

ARMv8 (64-bit) Instruction Set Architecture All ARMv8 instructions are 64 bits long, has 3 formats Reduced Instruction Set Computer (RISC) properties

- Only Load/Store instructions access memory
- Instructions operate on operands in processor registers
- 32 registers and r0 is always 0

Complex Instruction Set Computer (CISC) properties

- Conditional execution
- Multiple words can be accessed from memory with a single instruction (SIMD: single instr multiple data)

ISA Takeaways

The number of available registers greatly influenced the instruction set architecture (ISA)

Complex Instruction Set Computers were very complex
+ Small # of insns necessary to fit program into memory.
- greatly increased the complexity of the ISA as well.

Back in the day... CISC was necessary because everybody programmed in assembly and machine code! Today, CISC ISA's are still dominant due to the prevalence of x86 ISA processors. However, RISC ISA's today such as ARM have an ever increasing market share (of our everyday life!). ARM borrows a bit from both RISC and CISC.