
Anne	Bracy
CS	3410

Computer	Science
Cornell	University

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, McKee, and Sirer.

Which	is	not	considered	part	of	the	ISA?	

A. There	is	a	control	delay	slot.
B. The	number	of	inputs	each	instruction	can	have.	
C. Load-use	stalls	will	not	be	detected	by	the	

processor.	
D. The	number	of	cycles	it	takes	to	execute	a	

multiply.
E. Each	instruction	is	encoded	in	32	bits.

2

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

4

int x = 10;
x = x + 15;

C
compiler

addi r5, r0, 10
addi r5, r5, 15

MIPS
assembly

00100000000001010000000000001010
00100000101001010000000000001111

machine
code

assembler

CPU

Circuits

Gates

Transistors

Silicon

addi r0									r5																						10

r0	=	0
r5	=	r0	+	10
r5	=	r15	+	15

A
B

32 32RF

5

int x = 10;
x = 2 * x + 15;

C
compiler

addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15

MIPS
assembly

00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

machine
code

assembler

CPU

Circuits

Gates

Transistors

Silicon

Instruction	Set
Architecture	(ISA)

High	Level	
Languages

Instruction	Set	Architectures
• ISA	Variations,	and	CISC vs	RISC
• Peek	inside	some	other	ISAs:
• X86
• ARM

ISA	defines	the	permissible	instructions
• MIPS:	load/store,	arithmetic,	control	flow,	…
• ARMv7: similar	to	MIPS,	but	more	shift,	memory,	&	
conditional	ops

• ARMv8	(64-bit):	even	closer	to	MIPS,	no	conditional	
ops

• VAX:	arithmetic	on	memory	or	registers,	strings,	
polynomial	evaluation,	stacks/queues,	…

• Cray:	vector	operations,	…
• x86:	a	little	of	everything

Accumulators
• Early	stored-program	computers	had	one register!

• One	register	is	two	registers	short	of	a	MIPS	insn!
• Requires	a	memory-based	operand-addressing	mode

– Example:			add	200 //	ACC	=	ACC	+	Mem[200]

EDSAC	(Electronic	Delay	Storage	
Automatic	 Calculator)	in	1949

Intel	8008	in	1972
was	an	accumulator

Next	step: More	Registers
• Dedicated	registers

– separate	accumulators	for	multiply	or	divide	instructions	

• General-purpose	registers
– Registers	can	be	used	for	any	purpose
– MIPS,	ARM,	x86

• Register-memory architectures
– One	operand	may	be	in	memory	(e.g.	accumulators)
– x86	(i.e.	80386	processors)	

• Register-register architectures	(aka	load-store)
– All	operands	must be	in	registers
– MIPS,	ARM

#	of	available	registers	plays	huge	role	in	ISA	design
Machine Num General Purpose	Registers Architectural	Style Year
EDSAC 1 Accumulator 1949

IBM	701 1 Accumulator 1953

CDC	6600 8 Load-Store 1963

IBM	360 18 Register-Memory 1964

DEC	PDP-8 1 Accumulator 1965

DEC	PDP-11 8 Register-Memory 1970

Intel	8008 1 Accumulator 1972

Motorola	6800 2 Accumulator 1974

DEC VAX 16 Register-Memory,	Memory-Memory 1977

Intel	8086 1 Extended	Accumulator 1978

Motorola	6800 16 Register-Memory 1980

Intel	80386 8 Register-Memory 1985

ARM 16 Load-Store 1985

MIPS 32 Load-Store 1985

HP	PA-RISC 32 Load-Store 1986

SPARC 32 Load-Store 1987

PowerPC 32 Load-Store 1992

DEC	Alpha 32 Load-Store 1992

HP/Intel IA-64 128 Load-Store 2001

AMD64	(EMT64) 16 Register-Memory 2003

People	programmed	in	assembly	and	machine	code!
• Needed	as	many	addressing	modes	as	possible
• Memory	was	(and	still	is)	slow

CPUs	had	relatively	few	registers
• Register’s	were	more	“expensive”	than	external	mem
• Large	number	of	registers	requires	many	bits	to	index

Memories	were	small
• Encouraged	highly	encoded	microcodes as	instructions
• Variable	length	instructions,	load/store,	conditions,	etc

John	Cock
• IBM	801,	1980	(started	in		1975)
• Name	801	came	from	the	bldg that	housed	the	project
• Idea:	Possible	to	make	a	very	small	and	very	fast	core
• Known	as	“the	father	of	RISC	Architecture”
• Turing	Award	Recipient	and	National	Medal	of	Science

Dave	Patterson
• RISC	Project,	1982
• UC	Berkeley
• RISC-I:	½	transistors	&	3x	

faster
• Influences:	Sun	SPARC,	

namesake	of	industry

John	L.	Hennessy
• MIPS,	1981
• Stanford
• Simple	pipelining,	keep	full
• Influences:	MIPS	computer	

system,	PlayStation,	Nintendo

MIPS	=	Reduced	Instruction	Set	Computer	(RlSC)
• ≈	200	instructions,	32	bits	each,	3	formats
• all	operands	in	registers

– almost	all	are	32	bits	each
• ≈	1	addressing	mode:	Mem[reg +	imm]

x86	=	Complex	Instruction	Set	Computer	(ClSC)
• >	1000	instructions,	1	to	15	bytes	each	(dozens	of	add	
instructions)

• operands	in	dedicated	registers,		general	purpose	
registers,		memory,	on	stack,	…
– can	be	1,	2,	4,	8	bytes,	signed	or	unsigned

• 10s	of	addressing	modes
– e.g.		Mem[segment	+	reg +	reg*scale	+	offset]

RISC
• Single-cycle	execution
• Hardwired	control

• Load/store	architecture
• Few	memory	addressing	

modes
• Fixed-length	insn format

• Reliance	on	compiler	
optimizations

• Many	registers	(compilers	
are	better	at	using	them)

vs.	CISC
• many	multicycle operations
• microcoded multi-cycle	
operations

• register-mem	and	mem-mem
• many	modes

• many	formats	and	lengths

• hand	assemble	to	get	good	
performance

• few	registers

RISC	Philosophy
Regularity	&	simplicity
Leaner	means	faster
Optimize	common	case

Energy	efficiency
Embedded	Systems
Phones/Tablets

CISC	Rebuttal
Compilers can	be	smart
Transistors	are	plentiful
Legacy is	important
Code size	counts
Micro-code!
“RISC	Inside”

Desktops/Servers

What	is	one	advantage	of	a	CISC	ISA?

A. It	naturally	supports	a	faster	clock.
B. Instructions	are	easier	to	decode.	
C. The	static	footprint	of	the	code	will	be	smaller.
D. The	code	is	easier	for	a	compiler	to	optimize.
E. You	have	a	lot	of	registers	to	use.

17

All	MIPS	instructions	are	32	bits	long,	has	3	formats

R-type

I-type

J-type	

op rs rt rd shamt func
6	bits 5	bits 5	bits 5	bits 5	bits 6	bits

op rs rt immediate
6	bits 5	bits 5	bits 16	bits

op immediate (target address)
6 bits 26	bits

All	ARMv7	instructions	are	32	bits	long,	has	3	formats

R-type

I-type

J-type	

opx op rs rd opx rt
4	bits 8	bits 4	bits 4	bits 8	bits 4	bits

opx op rs rd immediate
4	bits 8	bits 4	bits 4	bits 12	bits

opx op immediate (target address)

4 bits 4 bits 24	bits

while(i != j) {
if (i > j)

i -= j;
else

j -= i;
}

Loop:	BEQ	Ri,	Rj,	End //	if	"NE"	(not	equal),	stay	in	loop	
SLT	Rd,	Rj,	Ri //		(i	>	j)	à Rd=1,	(i	≤	j)	à Rd	=	0	
BEQ	Rd,	R0, Else //		Rd	==	0	means	(i	≤	j)	à Else
SUB	Ri,	Ri,	Rj //	i	=	i-j;
J	Loop

Else: SUB	Rj,	Rj,	Ri //	j	=	j-i;
J	Loop	

End:

In	MIPS,	performance	will	be	
slow	if	code	has	a	lot	of	branches

3 NOP	injections	
due	to	delay	slot

while(i != j) {
if (i > j)

i -= j;
else

j -= i;
}

Loop:	CMP	Ri,	Rj	 //	set	condition	registers
//	Example:	4,	3à CR	=	0101
//	5,5	à CR	=	1000

SUBGT	Ri,	Ri,	Rj	 //	i	=	i-j			only	if	CR	&	0001	!=	0
SUBLE	Rj,	Rj,	Ri	 //	j	=	j-i only	if CR	&	1010	!=	0000	
BNE	loop //	if	"NE"	(not	equal),	then	loop

ARM: avoid	delays	with	
conditional	instructions

New:		1-bit	condition	
registers	(CR)

= ≠ < >

Control	Independence!

Shift	one	register	(e.g.	Rc)	any	amount
Add	to	another	register	(e.g.	Rb)
Store	result	in	a	different	register	(e.g.	Ra)

ADD	Ra,	Rb,	Rc LSL	#4
Ra	=	Rb +	Rc<<4
Ra	=	Rb +	Rc x	16

All	ARMv7	instructions	are	32	bits	long,	has	3	formats
Reduced	Instruction	Set	Computer	(RISC)	properties
• Only	Load/Store	instructions	access	memory
• Instructions	operate	on	operands	in	processor	registers
• 16	registers

Complex	Instruction	Set	Computer	(CISC)	properties
• Autoincrement,	autodecrement,	PC-relative	addressing
• Conditional	execution
• Multiple	words	can	be	accessed	from	memory	with	a	
single	instruction	(SIMD:	single	instr multiple	data)

All	ARMv8	instructions	are	64	bits	long,	has	3	formats
Reduced	Instruction	Set	Computer	(RISC)	properties
• Only	Load/Store	instructions	access	memory
• Instructions	operate	on	operands	in	processor	registers
• 32 registers	and	r0	is	always	0

Complex	Instruction	Set	Computer	(CISC)	properties
• Conditional	execution
• Multiple	words	can	be	accessed	from	memory	with	a	
single	instruction	(SIMD:	single	instr multiple	data)

The	number	of	available	registers	greatly	influenced	the	
instruction	set	architecture	(ISA)

Complex	Instruction	Set	Computers		were	very	complex
+	Small	#	of	insns necessary	to	fit	program	into	memory.
- greatly	increased	the	complexity	of	the	ISA	as	well.

Back	in	the	day…	CISC	was	necessary	because	everybody	
programmed	in	assembly	and	machine	code!		Today,	CISC	
ISA’s	are	still	dominant	due	to	the	prevalence	of	x86	ISA	
processors.		However,	RISC	ISA’s	today	such	as	ARM	have	an	
ever	increasing	market	share	(of	our	everyday	life!).
ARM	borrows	a	bit	from	both	RISC	and	CISC.

