
Anne	Bracy
CS	3410

Computer	Science
Cornell	University

These slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, and Sirer.

Complex	question
• How	fast	is	the	processor?
• How	fast	your	application	runs?
• How	quickly	does	it	respond	to	you?	
• How	fast	can	you	process	a	big	batch	of	jobs?
• How	much	power	does	your	machine	use?

2

Latency	(execution	time):	time	to	finish	a	fixed	task
Throughput	(bandwidth):	#	of	tasks	in	fixed	time
• Different:	exploit	parallelism	for	throughput,	not	
latency	(e.g.,	bread)

• Often	contradictory	(latency	vs.	throughput)
– Will	see	many	examples	of	this

• Use	definition	of	performance	that	matches	your	goals
– Scientific	program:	latency;	web	server:	throughput?

3

Car: speed	=	60	miles/hour,	capacity	=	5
Bus: speed	=	20	miles/hour,	capacity	=	60

Task:	transport	passengers	10	miles

4

Latency	(min) Throughput	(PPH)

Car

Bus

A.				 10
B.				 15
C.			 20
D.			 60
E.	 120

2	CLICKER
QUESTIONS
(Throughput)

Car: speed	=	60	miles/hour,	capacity	=	5
Bus: speed	=	20	miles/hour,	capacity	=	60

Task:	transport	passengers	10	miles

5

Latency	(min) Throughput	(PPH)

Car

Bus

10	min

30	min

15	PPH

60	PPH

Single-cycle	datapath: true	“atomic” fetch/execute	loop
Fetch,	decode,	execute	one	instruction/cycle

+ Low	CPI	(see	later	slides):	1	by	definition
– Long	clock	period:	to	accommodate slowest	instruction

(PC	à I$	à RF	à ALU	à D$	à RF)
6

PC I$ Register
File
s1 s2 d D$

+
4

Multi-cycle	datapath: attacks	slow	clock
Fetch,	decode,	execute	one	insn over	multiple	cycles

Allows	insns	to	take	different	number	of	cycles (main	point)
±Opposite	of	single-cycle:	short	clock	period,	high CPI

7

PC I$ Register
File
s1 s2 d D$

+
4

DO
B

A

Single-cycle
• Clock	period	=	50ns,	CPI	=	1
• Performance	=	50ns/insn

Multi-cycle: opposite	performance	split
+ Shorter	clock	period
– Higher	CPI

Example
• branch:	20%	(3 cycles),	load:	20%	(5 cycles),	ALU:	60%	(4 cycle)	
• Clock	period	=	11ns,	CPI	=	(20%*3)+(20%*5)+(60%*4)	=	4

– Why	is	clock	period	11ns	and	not	10ns?
• Performance	=	44ns/insn

Aside: CISC	makes	perfect	sense	in	multi-cycle	datapath
8

Program	runtime:

Instructions	per	program:	“dynamic	instruction	count”
• Runtime	count	of	instructions	executed	by	the	program
• Determined	by	program,	compiler,	ISA

Cycles	per	instruction:	“CPI”			(typical	range:	2	to	0.5)
• How	many	cycles does	an	instruction	take	to	execute?
• Determined	by	program,	compiler,	ISA,	micro-architecture

Seconds	per	cycle:	clock	period,	length	of	each	cycle
• Inverse	metric:	cycles/second	(Hertz)	or	cycles/ns	(Ghz)
• Determined	by	micro-architecture,	technology	parameters

For	lower	latency	(=better	performance)	minimize	all	three
• Difficult:	often	pull	against	one	another

9

= x xseconds instructions cycles seconds
program program instruction cycle

CPI:	Cycle/instruction	for on average
• IPC =	1/CPI

– Used	more	frequently	than	CPI
– Favored	because	“bigger	is	better”,	but	harder	to	compute	with

• Different	instructions	have	different	cycle	costs
– E.g.,	“add”	typically	takes	1	cycle,	“divide”	takes	>10	cycles

• Depends	on	relative	instruction	frequencies

CPI	example
• Program	has	equal	ratio:	integer,	memory,	floating	point
• Cycles	per	insn type:	integer	=	1,	memory	=	2,	FP	=	3
• What	is	the	CPI?	(33%	*	1)	+	(33%	*	2)	+	(33%	*	3)	=	2
• Caveat:	this	sort	of	calculation	ignores	many	effects

– Back-of-the-envelope	arguments	only
10

Assume	a	processor	with	instruction	frequencies	and	costs
• Integer	ALU:	50%,	1	cycle
• Load:	20%,	5	cycle
• Store:	10%,	1	cycle
• Branch:	20%,	2	cycle

Which	change	would	improve	performance	more?
A:		“Branch	prediction”	to	reduce	branch	cost	to	1	cycle?
B:		“Cache”	to	reduce	load	cost	to	3	cycles?

Compute	CPI

11

INT LD ST BR CPI

Base

A

B

A.		A	better
B.		B	better
C.		C	equal
D.		D	can’t	say

Assume	a	processor	with	instruction	frequencies	and	costs
• Integer	ALU:	50%,	1	cycle
• Load:	20%,	5	cycle
• Store:	10%,	1	cycle
• Branch:	20%,	2	cycle

Which	change	would	improve	performance	more?
A:		“Branch	prediction”	to	reduce	branch	cost	to	1	cycle?
B:		“Cache”	to	reduce	load	cost	to	3	cycles?

Compute	CPI

12

(winner)

INT LD ST BR CPI

Base

A

B

0.5	x 1 0.2	x 5 0.1	x 1 0.2	x 1 1.8

0.5	x 1 0.2	x 3 0.1	x 1 0.2	x 2 1.6

0.5	x 1	 0.2 x 5 0.1	x 1 0.2	x 2 2.0

1	Hertz	=	1	cycle/second
1	Ghz = 1	cycle/nanosecond,	1	Ghz =	1000	Mhz
General	public	(mostly) ignores	CPI
• Equates	clock	frequency	with	performance!

Which	processor	would	you	buy?
• Processor	A:	CPI	=	2,	clock	=	5	GHz
• Processor	B:	CPI	=	1,	clock	=	3	GHz
• Probably	A,	but	B	is	faster	(assuming	same	ISA/compiler)

Classic	example
• 800	MHz	PentiumIII faster	than	1	GHz	Pentium4!	
• Example:	Core	i7	faster	clock-per-clock	than	Core	2
• Same	ISA	and	compiler!

Meta-point:	danger	of	partial	performance	metrics!
13

(Micro)	architects	often	ignore	dynamic	instruction	count
• Typically	have	one	ISA,	one	compiler	® treat	it	as	fixed

CPU	performance	equation	becomes

MIPS (millions	of	instructions	per	second)
• Cycles	/	second:	clock	frequency	(in	MHz)
• Ex:	CPI	=	2,	clock	=	500	MHz	® 0.5	*	500	MHz	=	250	MIPS

Pitfall:	may	vary	inversely	with	actual	performance
– Compiler	removes	insns,	program	faster,	but	lower	MIPS
– Work	per	instruction	varies	(multiply	vs.	add,	FP	vs.	integer)

14

Latency: seconds											cycles	 seconds
insn insn cycle

Throughput: insn insn cycles
seconds												cycles	 second

= x

x=

Decrease	latency
Critical	Path
• Longest	path	determining	the	minimum	time	needed	
for	an	operation

• Determines	minimum	length	of	clock	cycle																	
i.e.	determines	maximum	clock	frequency

combinatorial
Logic

tcombinatorial

in
pu

ts
ar
riv
e

ou
tp
ut
s

ex
pe
ct
ed

15

Goal: Make	Multi-Cycle	@	30	MHz	CPU	(15MIPS)	run	2x	
faster	by	making	arithmetic	instructions	faster

Instruction	mix (for	P):
• 25%	load/store,		CPI	=	3	
• 60%	arithmetic,		CPI	=	2
• 15%	branches,				CPI	=	1

(1)What	is	CPI?

Goal:	Make	processor	run	2x	faster	(30à 15 MIPS)
Try:	Arithmetic	2	à 1?		(2)
(2àX	what	would	x	have	to	be?)

16

A.			2.0
B.			2.1
C.			2.2
D.			2.3
E.			2.4

A.			1.0
B.			1.3
C.			1.4
D.			1.5
E.			2.0

Goal: Make	Multi-Cycle	@	30	MHz	CPU	(15MIPS)	run	2x	
faster	by	making	arithmetic	instructions	faster

Instruction	mix (for	P):
• 25%	load/store,		CPI	=	3	
• 60%	arithmetic,		CPI	=	2
• 15%	branches,				CPI	=	1

What	is	CPI?

Goal:	Make	processor	run	2x	faster	(30à 15 MIPS)
Try:	Arithmetic	2	à 1?
(2àX	what	would	x	have	to	be?)

=	0.25	x	3	+	0.6	x	2	+	0.15	x	1						=	2.1

=	0.75	+	0.6	x	1 +	0.15	=	1.5

1.05	=	0.75	+	0.6x +	0.15 à x	=	0.25	(yikes!)	17

Amdahl’s	Law
Execution	time	after	improvement	=

Or:	Speedup	is	limited	by	popularity	of	improved	feature

Corollary:	build	a	balanced	system
• Don’t	optimize	1%	to	the	detriment	of	other	99%
• Don’t	over-engineer	capabilities	that	cannot	be	utilized
Caveat:	Law	of	diminishing	returns

execution	time	affected	by	improvement
amount	of	improvement

+		execution	time	unaffected

18

