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Performance

Complex question

How fast is the processor?

How fast your application runs?

ow quickly does it respond to you?
ow fast can you process a big batch of jobs?
ow much power does your machine use?



Performance: Latency vs. Throughput

Latency (execution time): time to finish a fixed task

Throughput (bandwidth): # of tasks in fixed time
* Different: exploit parallelism for throughput, not
latency (e.g., bread)
e Often contradictory (latency vs. throughput)

— Will see many examples of this
e Use definition of performance that matches your goals

— Scientific program: latency; web server: throughput?



iClicker Question #1: Car vs. Bus ’

Car: speed = 60 miles/hour, capacity =5

Bus: speed = 20 miles/hour, capacity = 60

Task: transport passengers 10 miles

Latency (min) Throughput (PPH)
Car
Bus
oo 2 CLICKER
| ) QUESTIONS

(Throughput)




iClicker Question #1: Car vs. Bus

Car: speed = 60 miles/hour, capacity =5

Bus: speed = 20 miles/hour, capacity = 60

Task: transport passengers 10 miles

Latency (min)

Throughput (PPH)

Car

10 min

15 PPH

Bus

30 min

60 PPH
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Review: Single-Cycle Datapath
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Single-cycle datapath: true “atomic” fetch/execute loop
Fetch, decode, execute one instruction/cycle

+ Low CPI (see later slides): 1 by definition
— Long clock period: to accommodate slowest instruction

(PC > I$ > RF > ALU = DS > RF)



New: Multi-Cycle Datapath
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Multi-cycle datapath: attacks slow clock
Fetch, decode, execute one insn over multiple cycles

Allows insns to take different number of cycles (main point)
+Opposite of single-cycle: short clock period, high CPI



Single- vs. Multi-cycle Performance

Single-cycle
* Clock period =50ns, CPI=1
* Performance = 50ns/insn

Multi-cycle: opposite performance split

+ Shorter clock period
— Higher CPI

Example

* branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycle)
* Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4

— Why is clock period 11ns and not 10ns?
* Performance = 44ns/insn

Aside: CISC makes perfect sense in multi-cycle datapath



Processor Performance Equation

Program runtime:
seconds instructions cycles seconds

program — program Instruction cycle

Instructions per program: “dynamic instruction count”
* Runtime count of instructions executed by the program
 Determined by program, compiler, ISA

Cycles per instruction: “CPl” (typical range: 2 to 0.5)
* How many cycles does an instruction take to execute?
* Determined by program, compiler, ISA, micro-architecture

Seconds per cycle: clock period, length of each cycle
* |nverse metric: cycles/second (Hertz) or cycles/ns (Ghz)
 Determined by micro-architecture, technology parameters
For lower latency (=better performance) minimize all three
* Difficult: often pull against one another



Cycles per Instruction (CPI)

CPI: Cycle/instruction for on average

e |IPC=1/CPI
— Used more frequently than CPI
— Favored because “bigger is better”, but harder to compute with

* Different instructions have different cycle costs
— E.g., “add” typically takes 1 cycle, “divide” takes >10 cycles

* Depends on relative instruction frequencies

CPl example
* Program has equal ratio: integer, memory, floating point

* Cycles per insn type: integer =1, memory =2, FP =3

 Whatisthe CPI? (33% * 1) +(33% *2)+(33% *3) =2

e Caveat: this sort of calculation ignores many effects
— Back-of-the-envelope arguments only
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iClicker Question #2: CPI

Assume a processor with instruction frequencies and costs
* Integer ALU: 50%, 1 cycle
* Load: 20%, 5 cycle
e Store: 10%, 1 cycle
* Branch: 20%, 2 cycle

Which change would improve performance more?

A: “Branch prediction” to reduce branch cost to 1 cycle?
B: “Cache” to reduce load cost to 3 cycles?

Compute CPI

INT LD ST BR CPI

A. A better Base
B. B better A
C. C equal B
D. D can’t say
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iClicker Question #2: CPI

Assume a processor with instruction frequencies and costs
* Integer ALU: 50%, 1 cycle
* Load: 20%, 5 cycle
e Store: 10%, 1 cycle
* Branch: 20%, 2 cycle

Which change would improve performance more?

A: “Branch prediction” to reduce branch cost to 1 cycle?
B: “Cache” to reduce load cost to 3 cycles?

Compute CP
INT LD ST BR CPI
Base 0.5x1 0.2x5 0.1x1 0.2x2 2.0
A 0.5x1 0.2x5 0.1x1 0.2x1 1.8
B 0.5x1 | 02x3 | 0.1x1 | 0.2x2 16 | (winner)
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Mhz (MegaHertz) and Ghz (GigaHertz)

1 Hertz = 1 cycle/second
1 Ghz =1 cycle/nanosecond, 1 Ghz = 1000 Mhz
General public (mostly) ignores CPI

* Equates clock frequency with performance!

Which processor would you buy?
* Processor A: CPIl = 2, clock =5 GHz
* Processor B: CPI =1, clock =3 GHz
* Probably A, but B is faster (assuming same ISA/compiler)

Classic example
e 800 MHz Pentiumlll faster than 1 GHz Pentium4!
 Example: Core i7 faster clock-per-clock than Core 2
* Same ISA and compiler!

Meta-point: danger of partial performance metrics!
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MIPS (performance metric, not the ISA)

(Micro) architects often ignore dynamic instruction count
* Typically have one ISA, one compiler — treat it as fixed

CPU performance equation becomes

Latency: seconds _ cycles X seconds
insn — insn cycle
Throughput: insn __insn cycles
seconds ~— cycles second

MIPS (millions of instructions per second)

* Cycles / second: clock frequency (in MHz)
 Ex: CPl =2, clock =500 MHz — 0.5 * 500 MHz = 250 MIPS

Pitfall: may vary inversely with actual performance
— Compiler removes insns, program faster, but lower MIPS
— Work per instruction varies (multiply vs. add, FP vs. integer)
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How to make the computer faster?

Decrease latency

Critical Path

* Longest path determining the minimum time needed
for an operation

* Determines minimum length of clock cycle
i.e. determines maximum clock frequency
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iClicker Question #3

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
e 25% load/store, CPI =3
e 60% arithmetic, CPl =2
e 15% branches, CPI=1

(1) What is CPI?

Goal: Make processor run 2x faster (30> 15 MIPS)
Try: Arithmetic 2 2 1? (2)
(22X what would x have to be?)
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iClicker Question #3

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
e 25% load/store, CPI =3
e 60% arithmetic, CPl =2
e 15% branches, CPI=1

WhatisCPI? =0.25x3+0.6x2+0.15x1 =2.1

Goal: Make processor run 2x faster (30> 15 MIPS)

Try: Arithmetic2 2> 1? =0.75+0.6x1+0.15=1.5
(22X what would x have to be?)

1.05=0.75+0.6x + 0.15 -2 x =0.25 (yikes!)



Amdahl’s Law

Amdahl’s Law

Execution time after improvement =

execution time affected by improvement _ ,
+ execution time unaffected

amount of improvement

Or: Speedup is limited by popularity of improved feature

Corollary: build a balanced system
* Don’t optimize 1% to the detriment of other 99%

 Don’t over-engineer capabilities that cannot be utilized
Caveat: Law of diminishing returns
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