Pipel

Anne Bracy
CS 3410
Computer Science

Cornell University

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, McKee, and Sirer.

See P&H Chapter: 4.5-4.8

Single Cycle = Multi-Cycle = Pipelining

Single-cycle

| insn0.fetch, dec, exec

insn1.fetch, dec, exec

Multi-cycle

| insnO.fetchl insn0.dec | insn0.exec

insn1 .fetch| insn1.dec | insn1 .exec|

Pipelined

|insn0.fetch insn0.dec | insn0.exec
insnl.fetch | insnl.dec insnl.execl

5-stage Pipeline
* Implementation

* Working Example

N

Hazards
o)
S e Structural

) e Data Hazards

t g e Control Hazards

Pipelined Processor

N

register > Al

A

file

addr
din dout

control

memory

compute
c jump/branch
N—s extend targets

Instruction Instruction
Fetch Decode Execute

Write-
Back

e e
) +—
O O

Memory

IF/ID EX/MEM MEM/WB

Time Graphs

3 4 5 6

EX | [MEM| | WB

ID || EX

IF {| ID

IF

|

Latency: 5 cycles
Throughput: 1 insn/cycle

Principles of Pipelined Implementation

* Break datapath into multiple cycles (here 5)

* Parallel execution increases throughput
* Balanced pipeline very important

Slowest stage determines clock rate
Imbalance kills performance

 Add pipeline registers (flip-flops) for isolation
* Each stage begins by reading values from latch

* Each stage ends by writing values to latch

e Resolve hazards

Stage
Fetch

Decode

Execute

Memory

Writeback

Pipeline Stages

Perform
Functionality

Use PC to index Program Memory,
increment PC

Decode instruction, generate
control signals, read register file

Perform ALU operation
Compute targets (PC+4+offset,
etc.) in case this is a branch,
decide if branch taken

Perform load/store if needed,
address is ALU result

Select value, write to register file

Latch values of interest

Instruction bits (to be decoded)
PC + 4 (to compute branch targets)

Control information, Rd index,
immediates, offsets, register values (Ra,
Rb), PC+4 (to compute branch targets)

Control information, Rd index, etc.
Result of ALU operation, value in case
this is a store instruction

Control information, Rd index, etc.
Result of load, pass result from execute

Instruction Fetch

Instruction
memory

addr mc

00 = read word

Rest of pipeline

N

* PC+4

 pcreg (PC registers: JR)

 pcrel (PC-relative: BEQ, BNE)
* pcabs (PC absolute: J and JAL)

-
O
o+
Q
L
-
O
)
o
>
|
o+
s}
=
—
Q
o]0
(q0)
i)
g

decode

register
file

B

Ra Rb

extend

PC+4|limm

ctrl

Rest of pipeline

Rest of pipeline

)
O
O
o
()
)]
-
o
)
o
-
-
o+
Vs
E
~N
Q
(o]0)
(g0
)
g

pcsel

pcreg

branch?

MEM

Q
o+
>
@)
Q
x
Ll
o
Q
o]0)
(q0)
i)
g

EX/MEM

din

dOUt

memory

MC

Rest of pipeline

>
|
O
&
Q
>
<t
Q
o]0)
(g0
i)
g

Putting it all together!

APl <bF——

Rd
D

™\

|

Rt‘Rd PC+4] |imm

OP

ID/EX EX/MEM MEM/WB

MIPS designed for pipelining

* |nstructions same length
* 32 bits, easy to fetch and then decode

* 3types of instruction formats

* Easy to route bits between stages

* Can read a register source before even knowing
what the instruction is

e Memory access through lw and sw only

* Access memory after ALU

iClicker Question

Consider a non-pipelined processor with clock
period C (e.g., 50 ns). If you divide the processor

into N stages (e.g., 6), your new clock period will
be:

A. C

B. N

C. less than C/N

D. C/N

E. greater than C/N

5-stage Pipeline
* Implementation

1 Q)

Hazards
3 ‘ e Structural

) e Data Hazards
! g e Control Hazards

Example: : Sample Code (Simple)

r3 < rl, r2
rée €< r4, rb5
r4 & 20(r2)
r5 € r2, r5
r7 =2 12(r3)

Assume 8-register machine

Example: Start State @ Cycle O

0
36
9
12
18
7 0
a1

22

o -
extend 0

Initial Bits 11-15 0
State Bits 16-20 0 0 0

Bits 26-31

J o238 RE

Register file

nop nop nop

Time:0 |F/ID ID/EX EX/MEM MEM/WB

18

Cycle 1: Fetch add

add312

Register file

Fetch: Bits 11-15
add312 Bits 16-20 0 0
Bits 26-31

nop nop

mime:1 |F/ID ID/EX EX/MEM MEM/WB

19

Cycle 2: Fetch nand, Decode add

nand 645 add312

S v9 pueu

Register file

Fetch: Bits 11-15
nand 645 Bits 16-20 0 0
Bits 26-31

nop nop

mime:2 |F/ID ID/EX EX/MEM MEM/WB

20

Cycle 3: Fetch Ilw, Decode nand, ...

Iw 4 20(2) nand 645 add312

(2)oz ¥ m

Register file

Fetch: 3
lw 4 20(2) Bits 16-20 5 0

Bits 26-31

nand nop

ID/EX EX/MEM MEM/WB

Cycle 4: Fetch add, Decode lw, ...

add525 Iw 4 20(2) nand 645 add312

nand

18 =01 0010
/=00 0111

-3=11 1101

)

Register file

20 |

Fetch: Bits 11-15 0
add525 4 6
Bits 26-31

Iw nand

Time:4__IF/ID ID/EX EX/MEM MEM/WB

2

Cycle 5: Fetch sw, Decode add, ...

sw 7 12(3) add525 lw 4 20 (2) nand 645 add 312

(€)et £ ms

Register file

—p

18

Fetch:
sw 7 12(3) Bits 16-20 4 6
Bits 26-31

lw nand

Time:s___IF/ID ID/EX EX/MEM MEM/WB

23

Cycle 6: Decode sw, ...

sw 7 12(3) add525 Iw 4 20(2) nand 64

45

22

Register file

= 12 |

No more Bits 11-15 0
instructions 7
Bits 26-31

SW

Time:6___IF/ID ID/EX EX/MEM MEM/WB

p

Cycle 7: Execute sw, ...

nop sw 7 12(3) add525 Iw 4 20(2

Register file

=

22

No more Bits 11-15
instructions Bits 16-20 7
Bits 26-31

SW

Time:7___IF/ID ID/EX EX/MEM MEM/WB

25

Cycle 7: Memory sw, ...

p nop sw 7 12(3)

Register file

-
No more Bits 11-15
instructions Bits 16-20 7
Bits 26-31

SW

Time:8___IF/ID ID/EX EX/MEM MEM/WB

I 26
; Sally McKee

Cycle 7: Writeback sw, ...

p nop nop

Register file

-

No more Bits 11-15
instructions Bits 16-20
Bits 21-23

Time:9 __IF/ID ID/EX EX/MEM MEM/WB

27

iClicker Question

Pipelining is great because:

. You can fetch and decode the same instruction
at the same time.

. You can fetch two instructions at the same time.

. You can fetch one instruction while decoding
another.

. Instructions only need to visit the pipeline
stages that they require.

5-stage Pipeline
* Implementation

* Working Example

Hazards
‘ e Structural

=

Data Hazards
! g e Control Hazards

Hazards

Correctness problems associated w/processor design

1. Structural hazards

Same resource needed for different purposes at the
same time (Possible: ALU, Register File, Memory)

2. Data hazards
Instruction output needed before it’s available

3. Control hazards
Next instruction PC unknown at time of Fetch

Resolving Register File Structural Hazard

—>

/
add r6, r3, r8 add r3, r1,r2

>
add r3, r1, r2 M |W

nop
nop

dd r6, r3, r8
arrr¢ EX M W

Problem: Need to read a value that is currently being written
Solution: negate RF clock: write first half, read second half

Dependences and Hazards

Dependence: relationship between two insns
* Data: two insns use same storage location
* Control: 1 insn affects whether another executes at all
* Not a bad thing, programs would be boring otherwise

* Enforced by making older insn go before younger one
— Happens naturally in single-/multi-cycle designs

— But not in a pipeline
Hazard: dependence & possibility of wrong insn order
* Effects of wrong insn order cannot be externally visible

* Hazards are a bad thing: most solutions either complicate
the hardware or reduce performance

iClicker Question

Data Hazards
* register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written

add r3 € rl, r2
sub rb5 € r3, ré4

?
nere a dependence: Yes = A No = B

nere a hazard?

iClicker Follow-up Question

Which of the following statements is true?

A. Whether there is a data dependence between two
instructions depends on the machine the program is
running on.

B. Whether there is a data hazard between two
instructions depends on the machien the program is
running on.

C.Both A &B
D. Neither A nor B

Where are the Data Hazards?
Clock cycle

1 2 3 4 5 6 7 8

>

addr3,r1,r2| | IF ‘|‘E ""'E""l_WB

sub r5, r3, r4 NEI\/‘-

lw r6, 4(r3)

orr5,r3, r5

sw r6, 12(r3)

\4

Visualizing Data Hazards (1)
Clock cycle

1 2 3

add ,r1,r2| | IF ‘|‘E

subr5, ,r4

lwr6, 4()

orr5,r3, r5

sw r6, 12(r3)

\ 4

Visualizing Data Hazards (2)
Clock cycle

1 2 3 4 5

addr3,r1,r2| | IF ‘|‘E ""'E""l_

sub_, r3, r4

lw r6, 4(r3)

or ,r3,r5

sw r6, 12(r3)

\ 4

Visualizing Data Hazards (3)
Clock cycle

1 2 3 4 5 6 7 8 9

>

addr3,r1,r2| | IF ‘|‘E ""'E""l_WB

sub r5, r3, r4 *\/IEIV‘-

lw , 4(r3)

orr5,r3, r5

sw , 12(r3)

\ 4

Detecting Data Hazards

—>

<l I—

™\

sub r5,r3,r4

IF/ID

=

?

add r3, r1, r2

ID/EX EX/MEM

Stall = (IF/ID.Ra != 0 && (IF/ID.Ra == ID/EX.Rd
|| IF/ID.Ra == EX/M.Rd))

Possible Responses to Data Hazards

1. Do Nothing
* Change the ISA to match implementation
!H

* “Hey compiler: don’t create code w/data hazards
(We can do better than this)

2. Stall
e Pause current and subsequent instructions till safe

3. Forward/bypass
* Forward data value to where it is needed

(Only works if value actually exists already)

Stalling

How to stall an instruction in ID stage

» prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage insn into nop for later stages
— innocuous “bubble” passes through pipeline
* prevent PC update

— stalls the next (IF stage) instruction

Control Signals for a Stall

AP <

addr3, r1, r2 Rd
sub r5, r3, r5 D
orre,r3,r4

addr6, r3, r8

detect
hazard

Rt|Rd||PC+4

OP

ID/EX EX/MEM MEM/WB

Detecting the Hazard

A=A

>

WIE\ VI

nop []

sub r5,r3,r5 add r3,rl,r2

or r6,r3,rd (WE=0)

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/EX.Rd <= STALL CONDITION MET
IF/ID.rA==Ex/M.Rd))

First Stall Cycle (nop in X)

A=A

>

WIE\ VI

nop []

sub r5,r3,r5 add r3,rl,r2

or r6,r3,rd (WE=0)

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd)) €= STALL CONDITION MET *

Second Stall Cycle (nop in X, MEM)

A=A

>

orre,r3,r4

nop []

sub r5,r3,r5

(WE=1)
/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd

nop

add r3,r1,r2

NO STALL CONDITION MET:
sub allowed to leave decode stage

Clock cycle Sta I I | ng

2 3 4

addr3,rl, r2

subr5, r3, r5

orroe, r3, rd

add r6, r3, r8

Clock cycle Sta I I | ng

2 3 4

addr3,rl, r2

r3 =20
2 Stall Cycles

sub r5, r3, r5 Ex M| W

orré, r3, rd ID | Ex M

add r6, r3, r8 IF | ID

Possible Responses to Data Hazards

1. Do Nothing
* Change the ISA to match implementation
!H

 “Compiler: don’t create code with data hazards

(Nice try, we can do better than this)
2. Stall

e Pause current and subsequent instructions till safe

3. Forward/bypass
* Forward data value to where it is needed

(Only works if value actually exists already)

Add the Forwarding Datapath

Forwarding Datapath

forward
unit

IF/ID ID/Ex
Two types of forwarding/bypass

Forwarding Datapath 1: Ex/MEM - EX

} data
—> —>
> mem

sub r5,r3, rl add r3, rl, r2

add r3, r1, r2 \/M W

subr5, r3, rl

Ex M | W

\ 4

Problem: EX needs ALU result that is in MEM stage
Solution: add a bypass from EX/MEM.D to start of EX =

Forwarding Datapath 1: Ex/MEM - EX

} data
—> —>
> mem

sub r5,r3, rl add r3, rl, r2

Detection Logic in Ex Stage:
forward = (Ex/M.WE && EX/M.Rd != 0 &&
ID/Ex.Ra == Ex/M.Rd)
|| (same for Rb)

Forwarding Datapath 2: Mem/WB —> EX

} data
—> .
> mem L/

orr6, r3, r4 sub r5, r3, rl add r3, r1,r2
>

add 3, rl, r2 MS W

sub r5, r3, rl Ex \M | W
orre,r3, rd Ex M | W

\ 4
Problem: EX needs value being written by WB

Solution: Add bypass from WB final value to start of EX =

Forwarding Datapath 2: Mem/WB —> EX

} data
—> .
> mem L/

orr6, r3, r4 sub r5, r3, rl add r3, r1,r2

Detection Logic:
forward = (M/WB.WE && M/WB.Rd !=0 &&
ID/Ex.Ra == M/WB.Rd &&
not (ID/Ex.WE && Ex/M.Rd != 0 &&
ID/Ex.Ra == Ex/M.Rd)
| | (same for Rb)

Forwarding Example 2

Clock cycle
1 2 3 4 5 6

time

>

addr3,rl, r2

sub r5, r3, r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

Forwarding Example 2

Clock cycle
1 2 3 4 5 6

addr3,r1,r2| IF ID Ex M W

time

>

sub r5, r3, r4 I= ID Ex M W

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

Load-Use Hazard Explained

l
data
} mem

orr6, r3, lw r4, 20(r8)

Data dependency after a load instruction:
* Value not available until after the M stage
- Next instruction cannot proceed if dependent

Load-Use Stall

>

orr6,r4,rl lw r4d, 20(r8)

lw r4, 20(r8)

orroe, r3, r4

Load-Use Stall (1)

J

lw r4, 20(r8)

IF ID Ex

Load-Use Stall (2)

} data
— —>|
mem

lw r4, 20(r8)

IF ID \Y TW
Stall

F ID GD®Ex M W

Load-Use Stall (3)

J

orr6,rd,rl

ID Ex M TW
Stall

F ID AD®YEx M W

Load-Use Detection

<

MC |/ WE}{ Rd

LM [TwWE]l 'Rd

IF/ID

Stall = If(ID/Ex.MemRead &&
IF/ID.Ra == ID/Ex.Rd

Incorrectly Resolving Load-Use Hazards

N

>

|

<

RbtRoL) imml| OO

Ra,

MC |/ WE}{ Rd

LM [TwWE]l 'Rd

A
IF/ID Ex/Mem Mem/WB

Most frequent 3410 non-solution to load-use hazards
Why is this “solution” so so so so so so awful?

iClicker Question

Forwarding values directly from Memory to the
Execute stage without storing them in a register
first:

. Does not remove the need to stall.
. Adds one too many possible inputs to the ALU.

. Will cause the pipeline register to have the
wrong value.

. Halves the frequency of the processor.
. BothA&D

Resolving Load-Use Hazards

Two MIPS Solutions:

* MIPS 2000/3000: delay slot

—|SA says results of loads are not available until one
cycle later

—Assembler inserts nop, or reorders to fill delay slot

* MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid
stalling in the load delay slot

5-stage Pipeline
* Implementation

* Working Example

N

@

eD 0 ner -
N,

—~

A B>

Hazards

Structural
Data Hazards

Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
- next PC not known until 2 cycles after branch/jump

0x10: beqrl, r2, L Branch not taken?
0x14: add r3, r0, r3 No Problem!

Ox18: sub r5, rd, r6 Branch taken?

Ox1C: L: or r3,r2,r4 Just fetched add, sub...
= Zap & Flush

* prevent PC update
Zap & Flush . clear IF/ID latch

* branch continues

/

New PC = 1C

If branch Taken—Zap

10: bequ,rz(Lj IF ID Ex M W

14: add r3, r0, r3 IF ID
18: subr5, r4, r6 IF

1c:@orr3, r2, r4 IF ID Ex M W

v

Zap & Flush

New PC = 1C

10: beqrl, rz(l_j EX
14: add r3, rQ, 13 IF |D

18: sub r5, r4 G |F
1c:@or r3, r2, rd IF ID

v

Ex

M W

Reducing the cost of control hazard

1. Delay Slot
* You MUST do this
MIPS ISA: 1 insn after ctrl insn always executed

e Whether branch taken or not

2. Resolve Branch at Decode

Some groups do this for Project 2, your choice
* Move branch calc from EXto ID
e Alternative: just zap 2"? instruction when branch taken

3. Branch Prediction

* Notin 3410, but every processor worth anything does this
(no offense!)

Delay Slot

New PC = 1C

beqrl, r2, L| IF Ex

. subr5, r4, r6

L:orr3,r2,rd

Resolve Branches @ Decode

decidel
branc

<_New Pd=1C

10: beqrl, rZ(Lj IF ID Ex M W

14: addr3, rO, r3

18: subrb5, r4, r6

1C:®orr3, r2, rd IF ID Ex M W

\4

Branch Prediction

Most processor support Speculative Execution

* Guess direction of the branch
— Allow instructions to move through pipeline
— Zap them later if guess turns out to be wrong

* A must for long pipelines

Data Hazard Takeaways

Data hazards occur when a operand (register) depends on the result
of a previous instruction that may not be computed yet. Pipelined
processors need to detect data hazards.

Stalling, preventing a dependent instruction from advancing, is one
way to resolve data hazards. Stalling introduces NOPs (“bubbles”)

into a pipeline. Introduce NOPs by (1) preventing the PC from
updating, (2) preventing writes to IF/ID registers from changing, and
(3) preventing writes to memory and register file. Nops significantly
decrease performance.

Forwarding bypasses some pipelined stages forwarding a result to a
dependent instruction operand (register). Better performance than
stalling.

Control Hazard Takeaways

Control hazards occur because the PC following a control
instruction is not known until control instruction is executed.
If branch is taken = need to zap instructions. 1 cycle
performance penalty.

Delay Slots can potentially increase performance due to
control hazards. The instruction in the delay slot will always

be executed. Requires software (compiler) to make use of
delay slot. Put nop in delay slot if not able to put useful

instruction in delay slot.

We can reduce cost of a control hazard by moving branch
decision and calculation from Ex stage to ID stage. With a
delay slot, this removes the need to flush instructions on

taken branches.

