State and Finite State Machines

Anne Bracy
CS 3410
Computer Science
Cornell University

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, and Sirer.

See P&H Appendix B.7. B.8, B.10, B.11

Stateful Components

Combinational logic

 Qutput computed directly from inputs
* System has no internal state

* Nothing depends on the past!

|nputs N’ > Comt?ina'!:ional ; > OUtpUtS
circuit M
Need:

e torecord data
e to build stateful circuits
e a state-holding device

Enter: Sequential Logic & Finite State Machines

Goals for Today
State

e Storing 1 bit
— Bistable Circuit

—Set-Reset Latch
— D Latch

—D Flip-Flops

e Storing N bits:
—Registers
—Memory

Finite State Machines (FSM)
* Mealy and Moore Machines
* Serial Adder Example

Round 1: Bistable Circuit

e Stable and unstable equilibria?

A — — B A Simple Device

I>O
o}
In stable state, A= B

04I>O_1 1 [: lo
—o<]— 40<]_

A — — B A —

How do we change the state?

Round 2: Set-Reset (SR) Latch

0 Stores a value Q and

S@O— Q its complement For reference:

S IR |QIQ A|B|OR [NOR
Q‘O@ R 0 |0 olofo |1

0 |1 0/1(1 0
—S QF 1 |0 1101 0
Jr ok 1 |1 1/1]1 o

0) 0 1 1

S S S S
—H 0 Q 25 >-Q >H5>Q >TH>-Q

Round 2: Set-Reset (SR) Latch

S@O— Q Stoltrse zgr;]/gllg(rencelnqcnd For reference:
S IR |QIQ A|B|OR [NOR
Q‘Oq: R 0|0 [Q]Q 0olojo |1
0 |1 |01 O0/(1(1 |0
—S Q- 1 10 |11]0 1/0|1 |O
4r ok 1 (1|00 1{1]1 |0

s 1 will stay 1 What happens when S,R changes from 1,1 to 0,07
,.}'gjj 0: m-,,:tzo Q, Q become unstable, oscillate (0,0 2 1,1 = 0,0)
0 1

— — —_ 1 —
S5 T S=3»-T S=3%-Q 55> Q
Hotel
California
Q o R Q 1 R Q o R Q
no change Resets Q Sets Q Forbidden! s

iIClicker Question
Frequency should be set to AA

What’s wrong with using the SR Latch to store 1 bit?

A. Qis undefined when S=0 and R=0

(That’s why this is called the forbidden state.)

. Q oscillates between 0 and 1 when the inputs
transition from S=1 and R=1 = S=0 and R=0

. The SR Latch is problematic b/c it has two outputs
to store a single bit.

. There is nothing wrong with the SR Latch!

Round 3: D Latch (1)

Ba
Ba

Ol

Ol

= =L [OO0

= O | = | O |0

* Inverter prevents SR Latch
from entering 1,1 state

* C = enables change

C =1, D Latch transparent:
set/reset (according to D)

C =0, D Latch opaque:
keep state (ignore D)

5

dc QL

Round 3: D Latch (1)

D- Hs aq
C—DG}RQ
ciplalQ
0(0|Q|Q
0(1|Q|Q
110|001
111|110

* Inverter prevents SR Latch
from entering 1,1 state

* C = enables change

C =1, D Latch transparent:
set/reset (according to D)

C =0, D Latch opaque:
keep state (ignore D)

5

dc QL

Aside: Clocks

Clock helps coordinate state changes
* Fixed period
* Frequency = 1/period

falling
\\\\ edge

rising
edge

10

Clock Disciplines

Level sensitive

 State changes when clock is high (or low)

Edge triggered

e State changes at clock edge

positive edge-triggered ‘
negative edge-triggered I

11

Clock Methodology
Clock Methodology

* Negative edge, synchronous

CI k tcombinational

< Sl
| compute |save| compute [save| compute(

- ———-—

Edge-Triggered = signals must be stable near falling edge
“near” = before and after

tsetup thold

12

Round 3: D Latch (2)

D1 " HS Q * Level sensitive
* Inverter prevents SR Latch
>0 — from entering 1,1 state
clk HOAR Q * clk = enables change
clk Q|0

= = O | O
= O | = | O |0

13

Round 3: D Latch (2)

* Inverter prevents SR Latch

D 1+ } S Q * Level sensitive
By

S i) gy gy
ck| Dl Q|Q
o|o|Q|Q
0|1]|Q|Q
1 /0|0 |1
1 11| 1 0

14

Round 4: D Flip-Flop

* Edge-Triggered

0 0 8 X D 8 e Data captured when
C C QpQ clockhigh
L2

clk - Q |-
T L1 [‘ e Output changes only
on falling edges

15

Round 4: D Flip-Flop

D passes through L1 to X

Clock = 1: L1 transparent D D\E X D QnQ

L2 opaque clk 1rc Q | OC Q

Ol

L1 L2

X passes through L2 to Q

Clock = 0: L1 opaque D ﬁkD Q X’D\ﬁlLQ
0 N 1 o

L2 transparent |k

c QL Yc "0
r L1 {>O’|V 12
Thus, on edge of the clock

(when CLK falls from 1-=0)
(D passes through to Q)

Ol

16

DFF Activity: Fill in the timing graph

D
C

-Q
Q

Clock =1
D passes through L1 to X

Clock=0
X passes through L2 to Q

Round 4: D Flip-Flop

D afP Q
g -

Q

 Edge-Triggered
e Data captured when
clock high

* Qutput changes only
on falling edges

Goals for Today
State

e Storing 1 bit
— Bistable Circuit
—Set-Reset Latch

—D Latch A-word-about-cloeks

—D Flip-Flops A word about terminology
e Storing N bits:

—Registers

—Memory

Finite State Machines (FSM)

* Mealy and Moore Machines
* Serial Adder Example 19

DO

D1

D2

D3

cl

E|E|E|||

Registers

* D flip-flops in parallel
e shared clock

 Additional (optional) inputs:
writeEnable, reset, ...

4-bit
4 reg | 4

clk 2

Register File

Register File
* N read/write registers Q,
* Indexed by 32 | Pw Dual-Read-Port
register number Single-Write-Port Qg
32x32
Register File
RW RA B

Tr P fs gs

Writing to the Register File (1)

Register File 2

* N read/write registers

* Indexed by
register number

addi r5, ro, 10

— r eg 0
— [RpRegl
decoder]|: >Reg 30
 BbReg31
T
1 e0101
5
Rw

How to write to one register in the register file?

* Need a decoder

22

Activity: 3-to-8 decoder truth table & circuit

ﬁ

;.

S

o0

ol

o2

o3

o4

o5

(0] &)

o7I

= == =0 0|00
= (= O O = = O O

= O = O = O = O

3-to-8
decoder

Activity: 3-to-8 decoder truth table & circuit

ﬁ

;.

S

o0

ol

o2

o3

o4

o5

(0] &)

o7I

= == =0 0|00
= (= O O = = O O

= O = O = O = O

3-to-8
decoder

Writing to the Register File (2)

Register File 2
* N read/write registers = 220
* Indexed by 5-t0-32 |
register number decoder i~ T Reg 30
q_|_)_'>Reg 31

addi r5, ro, 10

|

Ry W

How to write to one register in the register file?

* Need a decoder

25

Reading from the Register File
Register File

* N read/write registers

* Indexed by
register number

How to read from two registers? —

* Need a multiplexor Yy
51

Register File
32

Register File 52 35
* N read/write registers
* Indexed by 5-t0-32
register number decoder T

Implementation:

* D flip flops to store bits

* Decoder for each writ¢ port

* Mux for each read port

Register File

Register File
* N read/write registers

* Indexed by
register number

Implementation:

+)
32

Dw Dual-Read-Port

Q,

Single-Write-Port Qs

32 x32
Register File

Rw Ra

B

* D flip flops to store bits

Tr P fs gs

* Decoder for each write port

* Mux for each read port

32

32

28

Tradeoffs , [Rtot mux

Register File tradeoffs
+ Very fast (a few gate delays for b
both read and write) ¢
+ Adding extra ports is d
straightforward e
— Doesn’t scale "

e.g. 32Mb register file with

32 bit registers 5
Need 32x 1M-to-1 multiplexor h
and 32x 20-to-1M decoder

How many logic gates/transistors?

Takeaways

Set-Reset (SR) Latch can store one bit and we
can change the value of the stored bit. But, SR

_atc
AD

N whi

-lip-F

Latch has a forbidden state.

e avoiding a forbic

D Latch can store and change a bit like an SR

den state.

ip stores one bit.]

"he bit can be

changed in a synchronized fashion on the edge

of a

clock signal.
An N-

oit register stores N-bits. It is be created

with N D-Flip-Flops in parallel plus a shared
clock.

30

Memory

e Storage Cells + bus
* Inputs: Address, Data (for writes)
e QOutputs: Data (for reads)

* Also need R/W signal (not shown)

N

Address =——>

N address bits =2 2N words total
M data bits = each word M bits

Data

31

Memory

Storage Cells + bus

Decoder selects a word line

R/W selector determines access type
Word line is then coupled to the data lines

data lines

Address
Decoder

=

R/

4x2 Memory

Din[l] Dln[z]

E.g. How do we design
a4 x2 Memory Module?

(i.e. 4 word lines that are
each 2 bits wide)?

2
Address A— 4 x 2 Memory

Write Enable—
Output Enable -

Duslt] D2

E.g. How do we design
a 4 x 2 Memory Module? able :Lnable
0'%.:D'
(i.e. 4 word lines that are | |2to4 || { | »
. . 3 decoder enable
each 2 bits wide)- LI bl Limg
2
Address v+ . —+ | ‘ 1
enable
2H—D-
D]
|'Q_’ “Enable
Write Enable 1D e
Output Enable

Doutl1] Doutl2]

E.g. How do we design
a 4 x 2 Memory Module? able :Lnable
0'%.:D'
(i.e. 4 word lines that are | |2to4 || -
each 2 bits wide)? decoder enable
1 ";
2 o>
Address \—>{ — . ‘
lenable
T 22— .
Bit lines 1 >
7 “Enable
sh—tD- i
Write Enable ID+—
Output Enable

Doutl1] DBoul 2]

Memory

Din[l] Dln[z]

E.g. How do we design
a4 x2 Memory Module?

(i.e. 4 word lines that are
each 2 bits wide)?

Address A—

hable

2-to- i ﬁ—
9%41; _T
enable
d

enable

Word lines

/

Write Enable

nable

Output Enable

iClicker Question

What’s your familiarity with memory (SRAM,
DRAM)?

A. I've never heard of any of this.

B. I've heard the words SRAM and DRAM, but |
nave no idea what they are.

C. I know that DRAM means main memory.

D. | know the difference between SRAM and
DRAM and where they are used in a computer

system.

37

SRAM Caell
Typical SRAM Cell

word line

B

Each cell stores one bjt, and requires 4 — 8 transistors (6 is typical)

Pass-Through
Transistors

38

SRAM Summary
SRAM

*A few transistors (~6) per cell

*Used for working memory (caches)

*But for even higher density...

39

Dynamic RAM: DRAM

Dynamic-RAM (DRAM)
e Data values require constant refresh

bit line

word line

Il

Capacitor ——

Gnd =

Each cell stores one bit, and requires 1 transistors

40

Dynamic RAM: DRAM

Dynamic-RAM (DRAM)
e Data values require constant refresh

bit line

word line

/ ﬁ}\ Pass-Through

: Transistors
Capacitor —— v

Gnd =

Each cell stores one bit, and requires 1 transistors

41

DRAM vs. SRAM

Single transistor vs. many gates

* Denser, cheaper (S30/1GB vs. $30/2MB)
* But more complicated, and has analog sensing

Also needs refresh
* Read and write back...
 ...every few milliseconds
* Organized in 2D grid, so can do rows at a time
* Chip can do refresh internally

Hence... slower and energy inefficient

42

Memory

Register File tradeoffs
+ Very fast (a few gate delays for both read and write)
+ Adding extra ports is straightforward
— Expensive, doesn’t scale
— Volatile

Volatile Memory alternatives: SRAM, DRAM, ...
— Slower
+ Cheaper, and scales well
— Volatile

Non-Volatile Memory (NV-RAM): Flash, EEPROM, ...

+ Scales well
— Limited lifetime; degrades after 100000 to 1M writes

43

Goals for Today
State

e Storing 1 bit
— Bistable Circuit

—Set-Reset Latch
— D Latch

—D Flip-Flops

e Storing N bits:
—Registers
—Memory

Finite State Machines (FSM)
* Mealy and Moore Machines
* Serial Adder Example

44

Finite State Machines

An electronic machine which has

* external inputs

* externally visible outputs

* internal state

Output and next state depend on
* inputs

* current state

45

Automata Model
Finite State Machine

" Current
Q
J B State Com.b.
oo Logic
o
Al Input——

* inputs from external world
* outputs to external world
* internal state

* combinational logic

Output

Next State

46

FSM Example

input/output

0

0/
Legend < !
1/1/

Input: 1 or 0
Output: 1 0r 0 What input pattern is

States: Aor B the FSM ”/OOklnngI’”?

(Mealy Machine) Y

Mealy Machine

General Case: Mealy Machine

,, | Current
S Output
2 State [Comb.
i)ﬂ Logic
Al Input—s> Next State

Outputs and next state depend on both
current state and input

48

Special Case: Moore Machine

Outputs depend only on current state

Current Comb.
State Logic /— > Output

Registers

>

=3

©

c

]:
O

o O

m 3

o O

2

()

3

(o &

w

[ol

Q

[om

®

input 7\

) 50, [®

Legend

1 49

Activity: Build a Logic Circuit for a Serial Adder

Add two infinite input bit streams

e streams are sent with least-significant-bit (Isb) first
* How many states are needed to represent FSM?
* Draw and Fill in FSM diagram

..10110

——...00101
..01111
Strategy:

(1) Draw a state diagram (e.g. Mealy Machine)

(2) Write output and next-state tables

(3) Encode states, inputs, and outputs as bits

(4) Determine logic equations for next state and outputs

FSM: State Diagram — start here

...10110

——...00101
..01111

states:

Inputs: ??? and ?7?7?
Output: ???

FSM: State Dijgram

...10110

..01111

states:

Inputs: ??? and ?7?7?
Output: ???

52

FSM: State Dijgram

S1 —
/: 83/
__ _
a ..10110
—...00101 2
b ..01111

Two states: SO (no carry in), S1 (carry in)
Inputs: aand b
Output: z

e zisthe sum of inputs a, b, and carry-in (one bit at a time)
e A carry-out is the next carry-in state.

53

FSM: State Diagram
J

2?

2?

Current| -

state

Next
state

(2) Write down all input and
state combinations

54

Serial Adder: State Table

00/0 11/1
QOS2 C

10/1—01/1 10/0~—01/0

Current
state

(2) Write down all input and

state combinations

55

Serial Adder: State Table

00/0 11/1
QOS2 C

10/1—01/1 10/0~—01/0

(2) Write down all input and

state combinations

a |b |Current| z | Next
state state

0 |0 |SO 0 |SO

0|1 |SO 1 |SO

1 (0 |SO 1 |SO

1 (1 |SO 0 |S1

0 |0 |S1 1 |SO

0|1 |S1 0 |S1

1 |0 |S1 0 (S1

1 (1 |S1 1 |S1

56

’ FSM: State Diagram — start here

2?

2?

Current| -

state

Next
state

(3) Encode states, inputs, and
outputs as bits

57

Serial Adder: State Assighment

00/0 11/1
(o) @
01/1 10/0~—01/0

(3) Encode states, inputs, and

outputs as bits

Two states, so 1-bit is sufficient

(single flip-flop will encode the state)

a |b |s Z |S
0|0 |0 0 |0
0|1 |0 1 |0
1 (0 |0 1 |0
1 (1 |0 0 |1
0|0 |1 1 |0
0|1 |1 0 |1
1 (0 |1 0 |1
1 (1 |1 1 |1

58

FSM: State Diagram

2?2 17?? | Current| ? | Next
state state

(4) Determine logic equations for
next state and outputs

59

Serial Adder: Circuit

Next Current Outout
State State , P
sI
SJp a3 ,[Comb.
3 Logic
Next State
b ,
Input S
a|b |s Z |
i L 0 |9 (4) Determine logic equations
i |9 for next state and outputs
110 |0 1 |0
1 (1 |0 0 |1 o | |
0 lo |1 T 1o Combinational Logic Equations
0 (1 |1 0 |1 Z’=ab§+ibs+aps+abs
10 |1 0 |1 s’ = abs + abs + abs + abs
1 (1 |1 1 |1 0

Sequential Logic Circuits

Next Current Output
State State ,
; D Q S S Com.b.
3 Logic
b > Next State
/\ —> 1
Input S
Zz = abs + abs + abs + abs
s’ = abs + abs + abs + abs
Strategy:

(1) Draw a state diagram (e.g. Mealy Machine)

(2) Write output and next-state tables

(3) Encode states, inputs, and outputs as bits

(4) Determine logic equations for next state and outputs

Summary

We can now store data values

 Stateful circuit elements (D Flip Flops,
Registers, ...)

* Clock synchronizes state changes

e State Machines or Ad-Hoc Circuits

62

