
Anne	Bracy
CS	3410

Computer	Science
Cornell	University

See	P&H	Appendix	B.7.	B.8,	B.10,	B.11	

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, and Sirer.

Combinational	logic
• Output	computed	directly	from	inputs
• System	has	no	internal	state
• Nothing	depends	on	the	past!

Need:	
• to	record	data
• to	build	stateful circuits
• a	state-holding	device

Enter: Sequential	Logic	&	Finite	State	Machines
2

Inputs Combinational
circuit

OutputsN M

State
• Storing	1	bit

–Bistable Circuit
– Set-Reset	Latch
–D	Latch
–D	Flip-Flops

• Storing	N	bits:	
– Registers
–Memory

Finite	State	Machines	(FSM)
• Mealy	and	Moore	Machines
• Serial	Adder	Example 3

4

A B A Simple Device

• Stable	and	unstable	equilibria?

In	stable	state,	A	=	B

How	do	we	change	the	state?

A B

1

A B

10 0

Stores	a	value	Q	and	
its	complement

5

S R Q Q"
0 0
0 1
1 0
1 1

S

R

Q"

Q

A B OR NOR
0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

For	reference:

S

R

Q"

Q

S

R

Q"

Q

S

R

Q"

Q

S

R

Q"

Q

0

0

0

0

1 1

1 1

S

R

Q

Q"

6

S

R

Q"

Q

S

R

Q"

Q

S

R

Q"

Q

S

R

Q"

Q

0

0

0

0

1 1

1 1
no	change Resets	Q Sets	Q Forbidden!

If	Q	is	1,	will	stay	1
if	Q	is	0,	will	stay	0

What	happens	when	S,R	changes	from	1,1	to	0,0?
Q,	Q" become	unstable,	oscillate (0,0	à 1,1	à 0,0)

Stores	a	value	Q	and	
its	complement
S R Q Q"
0 0 Q Q"
0 1 0 1
1 0 1 0
1 1 0 0

S

R

Q"

Q

A B OR NOR
0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

For	reference:

S

R

Q

Q"

Hotel	
California

iClicker Question
Frequency	should	be	set	to	AA

What’s	wrong	with	using	the	SR	Latch	to	store	1 bit?

A. Q	is	undefined	when	S=0	and	R=0
(That’s	why	this	is	called	the	forbidden	state.)

B. Q	oscillates	between	0	and	1	when	the	inputs	
transition	from	S=1	and	R=1	à S=0	and	R=0

C. The	SR	Latch	is	problematic	b/c	it	has	two	outputs	
to	store	a	single	bit.

D. There	is	nothing	wrong	with	the	SR	Latch!
7

8

S

R

D

C

Q

Q"

C D Q Q"

0 0

0 1

1 0

1 1

• Inverter	prevents	SR	Latch	
from	entering	1,1	state

• C	=	enables	change

C	=	1,	D	Latch	transparent:
set/reset	(according	to	D)

C	=	0,	D	Latch	opaque:
keep	state	(ignore	D)

D Q
Q"C

9

S

R

D

C

Q

Q"

C D Q Q"

0 0 Q Q"

0 1 Q Q"

1 0 0 1

1 1 1 0

• Inverter	prevents	SR	Latch	
from	entering	1,1	state

• C	=	enables	change

C	=	1,	D	Latch	transparent:
set/reset	(according	to	D)

C	=	0,	D	Latch	opaque:
keep	state	(ignore	D)

D Q
Q"C

Clock helps	coordinate	state	changes
• Fixed	period
• Frequency	=	1/period

10

1

0
clock
period

clock
high

clock
low

rising
edgefalling

edge

Level	sensitive
• State	changes	when	clock	is	high	(or	low)

Edge	triggered
• State	changes	at	clock	edge

11

positive	edge-triggered

negative edge-triggered

Clock	Methodology
• Negative	edge,	synchronous

Edge-Triggered	à signals	must	be	stable	near	falling	edge
“near”	=	before	and	after

tsetup thold

12

clk

compute save

tsetup thold

compute save compute

tcombinational

13

S

R

D

clk

Q

Q"

clk D Q Q"

0 0

0 1

1 0

1 1

• Level	sensitive
• Inverter	prevents	SR	Latch	
from	entering	1,1	state

• clk =	enables	change

clk

D
Q

14

S

R

D

clk

Q

Q"

clk D Q Q"

0 0 Q Q"

0 1 Q Q"

1 0 0 1

1 1 1 0

• Level	sensitive
• Inverter	prevents	SR	Latch	
from	entering	1,1	state

• clk =	enables	change

clk

D
Q

• Edge-Triggered
• Data	captured	when	
clock	high

• Output	changes	only	
on	falling	edges

D Q
Q"

D Q
Q"C C

X Q

Q"
D

clk
L1 L2

15

Clock	=	1: L1	transparent
L2	opaque

D Q
Q"

D Q
Q"C C

X Q

Q"
D
clk 01

L1 L2

XD

D	passes	through	L1	to	X

X

Clock	=	0: L1	opaque	
L2	transparent

D Q
Q"

D Q
Q"C C

X Q

Q"
D
clk 10

L1 L2

X Q

X passes	through	L2	to	Q

X

16

Thus,	on	edge	of	the	clock	
(when	CLK falls	from	1à0)

(D passes	through	to	Q)

17

D Q
Q"

D Q
Q"C C

clk

D

X

Q

X Q

Q"
D

clk 1

Clock	=	1
D	passes	through	L1	to	X

Clock	=	0
X	passes	through	L2	to	Q

18

D Q
Q"

D Q
Q"C C

clk

D

X

Q

c

X

c

Q

Q"
D

clk

• Edge-Triggered
• Data	captured	when	
clock	high

• Output	changes	only	
on	falling	edges

State
• Storing	1	bit

–Bistable Circuit
– Set-Reset	Latch
–D	Latch A	word	about	clocks
–D	Flip-Flops A	word	about	terminology

• Storing	N	bits:	
– Registers
–Memory

Finite	State	Machines	(FSM)
• Mealy	and	Moore	Machines
• Serial	Adder	Example 19

• D	flip-flops	in	parallel	
• shared	clock
• Additional	(optional)	inputs:

writeEnable,	reset,	…

20

clk

D0

D3

D1

D2

4 4
4-bit
reg

clk

Register	File
• N	read/write	registers
• Indexed	by	
register	number

Dual-Read-Port
Single-Write-Port

32	x	32	
Register	File

QA

QB

DW

RW RA RBW

32

32

32

1 5 5 5

21

Register	File
• N	read/write	registers
• Indexed	by	
register	number

addi r5, r0, 10

How	to	write	to	one register	in	the	register	file?
• Need	a	decoder

Reg 0

Reg 30
Reg 31

Reg 1
5-to-32
decoder

5
RW

D
32

….…
00101

22

i2 i1 i0 o0 o1 o2 o3 o4 o5 o6o7

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3-to-8
decoder

3
RW

…

101

23

i2 i1 i0 o0 o1 o2 o3 o4 o5 o6o7

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3-to-8
decoder

3
RW

…

101

i2
i1
i0

o0

i2
i1
i0

o5

24

Register	File
• N	read/write	registers
• Indexed	by	
register	number

addi r5, r0, 10

How	to	write	to	one register	in	the	register	file?
• Need	a	decoder

Reg 0

….
Reg 30
Reg 31

Reg 1
5-to-32
decoder

5RW W

D
32

25

Register	File
• N	read/write	registers
• Indexed	by	
register	number

How	to	read	from	two	registers?
• Need	a	multiplexor

32
Reg 0
Reg 1
….
Reg 30
Reg 31

M
U
X

M
U
X

32
QA

32
QB

55
RBRA

….

….

26

Register	File
• N	read/write	registers
• Indexed	by	
register	number

Implementation:
• D	flip	flops	to	store	bits
• Decoder	for	each	write	port
• Mux for	each read	port

32
Reg 0
Reg 1
….
Reg 30
Reg 31

M
U
X

M
U
X

32
QA

32
QB

55
RBRA

….

….

5-to-32
decoder

5
RWW

D
32

27

Register	File
• N	read/write	registers
• Indexed	by	
register	number

Implementation:
• D	flip	flops	to	store	bits
• Decoder	for	each	write	port
• Mux for	each read	port

Dual-Read-Port
Single-Write-Port

32	x	32	
Register	File

QA

QB

DW

RW RA RBW

32

32

32

1 5 5 5

28

Register	File	tradeoffs
+ Very	fast	(a	few	gate	delays	for	

both	read	and	write)
+ Adding	extra	ports	is	

straightforward
– Doesn’t	scale
e.g.	32Mb	register	file	with	
32	bit	registers
Need	32x	1M-to-1	multiplexor	
and	32x	20-to-1M	decoder
How	many	logic	gates/transistors?

a

b

c

d

e

f

g

h

s2s1s0

8-to-1	mux

29

• Set-Reset	(SR)	Latch	can	store	one	bit	and	we	
can	change	the	value	of	the	stored	bit.		But,	SR	
Latch	has	a	forbidden	state.

• D	Latch	can	store	and	change	a	bit	like	an	SR	
Latch	while	avoiding	a	forbidden	state.

• A	D	Flip-Flip	stores	one	bit.		The	bit	can	be	
changed	in	a	synchronized	fashion	on	the	edge	
of	a	clock	signal.

• An	N-bit	register stores	N-bits.		It	is	be	created	
with	N D-Flip-Flops	in	parallel	plus	a	shared	
clock.

30

• Storage	Cells	+	bus
• Inputs:	Address,	Data	(for	writes)
• Outputs:	Data	(for	reads)
• Also	need	R/W	signal	(not	shown)

• N	address	bits	à 2N		words	total
• M	data	bits	à each	word	M	bits	 M

N
Address

Data
31

• Storage	Cells	+	bus
• Decoder	selects	a	word	line	
• R/W	selector determines access	type
• Word	line	is	then	coupled	to	the	data	lines

data	lines

Ad
dr
es
s

De
co
de

r
R/W

E.g.	How	do	we	design	
a	4	x	2	Memory	Module?

(i.e.	4	word	lines	that	are
each	2	bits	wide)?

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3
Write	Enable

Output	Enable

4	x	2	Memory

33

2-to-4
decoder

2
Address

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3
Write	Enable

Output	Enable

E.g.	How	do	we	design	
a	4	x	2	Memory	Module?

(i.e.	4	word	lines	that	are
each	2	bits	wide)?

2-to-4
decoder

2
Address

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3
Write	Enable

Output	Enable

E.g.	How	do	we	design	
a	4	x	2	Memory	Module?

(i.e.	4	word	lines	that	are
each	2	bits	wide)?

Bit	lines

35

2-to-4
decoder

2
Address

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3
Write	Enable

Output	Enable

E.g.	How	do	we	design	
a	4	x	2	Memory	Module?

(i.e.	4	word	lines	that	are
each	2	bits	wide)?

Word	lines

36

What’s	your	familiarity	with	memory	(SRAM,	
DRAM)?

A. I’ve	never	heard	of	any	of	this.
B. I’ve	heard	the	words	SRAM	and	DRAM,	but	I	

have	no	idea	what	they	are.
C. I	know	that	DRAM	means	main	memory.
D. I	know	the	difference	between	SRAM	and	

DRAM	and	where	they	are	used	in	a	computer	
system.

37

Typical	SRAM	Cell

BB"

word	linebi
t	l
in
e

Each	cell	stores	one	bit,	and	requires	4	– 8	transistors	(6	is	typical)

Pass-Through
Transistors

38

SRAM
•A	few	transistors	(~6)	per	cell
•Used	for	working	memory (caches)

•But	for	even	higher	density…

39

Dynamic-RAM	(DRAM)
• Data	values	require	constant	refresh

Gnd

word	linebi
t	l
in
e

Capacitor

Each	cell	stores	one	bit,	and	requires	1 transistors
40

Dynamic-RAM	(DRAM)
• Data	values	require	constant	refresh

Gnd

word	linebi
t	l
in
e

Capacitor

Pass-Through
Transistors

Each	cell	stores	one	bit,	and	requires	1 transistors
41

Single	transistor	vs.	many	gates
• Denser,	cheaper	($30/1GB	vs.	$30/2MB)
• But	more	complicated,	and	has	analog	sensing

Also	needs	refresh
• Read	and	write	back…
• …every	few	milliseconds
• Organized	in	2D	grid,	so	can	do	rows	at	a	time
• Chip	can	do	refresh	internally

Hence…	slower	and	energy	inefficient
42

Register	File	tradeoffs
+ Very	fast	(a	few	gate	delays	for	both	read	and	write)
+ Adding	extra	ports	is	straightforward
– Expensive,	doesn’t	scale
– Volatile

Volatile	Memory	alternatives:	SRAM,	DRAM,	…
– Slower
+ Cheaper,	and	scales	well
– Volatile

Non-Volatile	Memory	(NV-RAM):	Flash,	EEPROM,	…
+ Scales	well
– Limited	lifetime;	degrades	after	100000	to	1M	writes

43

State
• Storing	1	bit

–Bistable Circuit
– Set-Reset	Latch
–D	Latch
–D	Flip-Flops

• Storing	N	bits:	
– Registers
–Memory

Finite	State	Machines	(FSM)
• Mealy	and	Moore	Machines
• Serial	Adder	Example 44

An	electronic	machine	which	has
• external	inputs
• externally	visible	outputs
• internal	state

Output	and	next	state	depend	on
• inputs
• current	state

45

Finite	State	Machine

• inputs	from	external	world
• outputs	to	external	world
• internal	state
• combinational	logic	

46

Next	State

Current	
State

Input

Output
Re
gi
st
er
s
Comb.
Logic

47

Legend

state

input/output

start
state

A B

0/0
1/0 0/0

1/1

Input:	1	or	0
Output:	1 or	0
States:	A or	B

What	input	pattern	is	
the	FSM	“looking	for”?

(Mealy	Machine)

General	Case:	Mealy	Machine

Outputs	and	next	state	depend	on	both
current	state	and	input

48

Next	State	

Current	
State

Input

Output
Re
gi
st
er
s
Comb.
Logic

Special	Case:
Outputs depend	only	on	current	state

49

Next	State

Current	
State

Input

Output
Re
gi
st
er
s Comb.

Logic

Comb.
Logic

A
0

B
0

0

1

0

1Legend

state
out

input

start
out

C
1

1

0

Add	two	infinite	input	bit	streams
• streams	are	sent	with	least-significant-bit	(lsb)	first
• How	many	states	are	needed	to	represent	FSM?
• Draw	and	Fill	in	FSM	diagram

50

…10110

…01111
…00101

Strategy:
(1)	Draw	a	state	diagram	(e.g.	Mealy	Machine)
(2)	Write	output	and	next-state	tables
(3)	Encode	states,	inputs,	and	outputs	as	bits
(4)	Determine	logic	equations	for	next	state	and	outputs

states:
Inputs:	??? and	???
Output:	???

• .
51

…10110

…01111
…00101

states:
Inputs:	??? and	???
Output:	???

• .
52

S0 S1__/_ __/_

__/_

__/_

__/___/_

__/_

__/_

…10110

…01111
…00101

Two	states:	S0 (no	carry	in),	S1 (carry	in)
Inputs:	a and	b
Output:	z	

• z is	the	sum	of	inputs	a,	b,	and	carry-in	(one	bit	at	a	time)
• A	carry-out	is the	next	carry-in	state.
• .

53

…10110

…01111
…00101

a

b
z

S0 S1__/_ __/_

__/_

__/_

__/___/_

__/_

__/_

54

?? ?? Current
state

? Next
state

(2)	Write	down	all	input	and	
state	combinations

S0 S1__/_ __/_

__/_

__/_

__/___/_

__/_

__/_

55

a b Current
state

z Next
state

S0 S100/0 11/1

01/0

11/0

10/010/1

00/1

01/1

(2)	Write	down	all	input	and	
state	combinations

(2)	Write	down	all	input	and	
state	combinations

56

a b Current
state

z Next
state

0 0 S0 0 S0
0 1 S0 1 S0
1 0 S0 1 S0
1 1 S0 0 S1
0 0 S1 1 S0
0 1 S1 0 S1
1 0 S1 0 S1
1 1 S1 1 S1

S0 S100/0 11/1

01/0

11/0

10/010/1

00/1

01/1

57

?? ?? Current
state

? Next
state

(3)	Encode	states,	inputs,	and	
outputs	as	bits

S0 S1__/_ __/_

__/_

__/_

__/___/_

__/_

__/_

(3)	Encode	states,	inputs,	and	
outputs	as	bits

Two	states,	so	1-bit	is	sufficient	
(single	flip-flop	will	encode	the	state)

58

a b s z s'
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

0 100/0 11/1

01/0

11/0

10/010/1

00/1

01/1

59

?? ?? Current
state

? Next
state

(4)	Determine	logic	equations	for	
next	state	and	outputs

(4)	Determine	logic	equations	
for	next	state	and	outputs

Combinational	Logic	Equations
z =	a%bs̅ +	abs +	abs	+	abs
s’ =	abs̅ +	a%bs	+	ab%s	+	abs

60

Next	State	

Current	
State

Input

Output

Comb.
Logica

b

D Q s zs'

s'

Next	
State

a b s z s'
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

61

Strategy:
(1)	Draw	a	state	diagram	(e.g.	Mealy	Machine)
(2)	Write	output	and	next-state	tables
(3)	Encode	states,	inputs,	and	outputs	as	bits
(4)	Determine	logic	equations	for	next	state	and	outputs

Next	State	

Current	
State

Input

Output

Comb.
Logica

b

D Q s zs'

s'

Next	
State

z =	a%bs̅ +	abs +	abs	+	abs
s’ =	abs̅ +	a%bs	+	ab%s	+	abs

We	can	now	store	data	values
• Stateful	circuit	elements	(D	Flip	Flops,	
Registers,	…)

• Clock	synchronizes	state	changes
• State	Machines	or	Ad-Hoc	Circuits

62

