
Anne	Bracy
CS	3410

Computer	Science
Cornell	University

See:	Chapter	3	in	your	zybook

The slides are the product of many rounds of teaching CS 3410 by
Professors Weatherspoon, Bala, Bracy, and Sirer.

memory

inst

32

pc

2
00

new pc
calculation

register file

control

5 5 5

alu

32

Simplified	Single-cycle	processor

focus	
for	

today

Binary	Operations
• Number	representations
• One-bit	and	four-bit	adders
• Negative	numbers	and	two’s	compliment
• Addition	(two’s	compliment)
• Subtraction	(two’s	compliment)	

3

Recall:	Binary
• Two	symbols	(base	2):	true and	false;	1 and	0
• Basis	of	Logic	Circuits	and	all	digital	computers

So,	how	do	we	represent	numbers	in Binary (base	2)?
• We	know	represent	numbers	in	Decimal (base	10).

– E.g.	6	3	7

• Can	just	as	easily	use	other	bases
– Base	2	— Binary

– Base	8	— Octal

– Base	16	— Hexadecimal
4

102	101 100

1	0		0	1	1	1		1	1	0	1
29 28 27	 26 25 24 23		22		21 20

0x	2	7	d
162161160

0o	1	1	7	5
83			82			81 80

6·102 +	3·101 +	7·100
=	637

1·83 +	1·82 +	7·81 +	5·80
=	637

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

How	do	we	count	in	different	bases?
• Dec (base	10) Bin	(base	2)	 Oct (base	8) Hex (base	16)

5

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

.

.

99
100

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22

.

.

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

10
11
12

.

.

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

1	0000
1	0001
1	0010

.

.

0b	1111	1111	=
0b	1	0000	0000	=

0o	77	=
0o	100	=

0x	ff =
0x	100	=

Base	conversion via	repetitive	division
• Divide	by	base,	write	remainder,	move	left	with	quotient

637 ÷ 8 =	79 remainder		5
79	÷ 8 =	9						 remainder			7
9	÷ 8 =	1						 remainder			1
1	÷ 8	=	0						 remainder			1

637 = 0o	1175

7

lsb (least	significant	bit)

msb (most	significant	bit)

lsbmsb

Base	conversion	via	repetitive	division
Divide	by	base,	write	remainder,	move	left	with	quotient
637 ÷ 2	=	318 remainder	 1
318	÷ 2	=	159		 remainder			 0
159	÷ 2	=	79				 remainder		 1
79	÷ 2	=	39						remainder			 1
39	÷ 2	=	19						remainder			 1
19	÷ 2	=	9								remainder			 1
9	÷ 2	=	4 remainder			 1
4	÷ 2	=	2 remainder			 0
2	÷ 2	=	1								remainder			 0
1	÷ 2	=	0								remainder			 1

637 = 10	0111	1101 (or	0b10	0111	1101)
8

lsb (least	significant	bit)

msb (most	significant	bit)

lsbmsb

Base	conversion via	repetitive	division
Divide	by	base,	write	remainder,	move	left	with	quotient
637 ÷ 16	=	39 remainder		13
39	÷ 16	=	2					 remainder			7
2	÷ 16	=	0							remainder			 2

637 =	0x	2	7	13	=	0x	2	7	d
Thus, 637 = 0x27d

9

lsb

msb dec =	hex
10			=		0xa
11			=		0xb
12			=		0xc
13			=		0xd
14			=		0xe
15			=		0xf

=	bin
=	1010
=	1011
=	1100
=	1101
=	1110
=	1111

?				

Binary to Octal
• Convert	groups	of	three	bits from	binary	to	oct
• 3	bits	(000—111)	have	values	0…7	=	1	octal	digit
• E.g.	0b1001111101

1			1 7					5 à 0o1175

Binary to Hexadecimal
• Convert	nibble (group	of	four	bits)	from	binary	to	
hex

• Nibble	(0000—1111)	has	values	0…15	=	1	hex	digit
• E.g.	0b1001111101

2 7							d à 0x27d
10

There	are	10	types	of	people	in	the	world:
Those	who	understand	binary
And	those	who	do	not
And those	who	know	this	joke	was	written	in	base	3

11

Binary	Operations
• Number	representations
• One-bit	and	four-bit	adders
• Negative	numbers	and	two’s	compliment
• Addition	(two’s	compliment)
• Subtraction	(two’s	compliment)	

12

Addition	works	the	same	way	
regardless	of	base

• Add	the	digits	in	each	position
• Propagate	the	carry

Unsigned	binary	addition	is	pretty	easy
• Combine	two	bits	at	a	time
• Along	with	a	carry

13

183
+	254

001110
+	011100			

How	do	we	do	arithmetic	in	binary?

1

437

111 000

111
Carry-outCarry-in

14

Half	Adder
• Adds	two	1-bit	numbers
• Computes	1-bit	result	and			
1-bit	carry

• No	carry-in	

A B

S

Cout

A B Cout S

0 0

0 1

1 0

1 1

17

A B

S

Cin

A B Cin Cout S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Cout

Full	Adder
• Adds	three	1-bit	numbers
• Computes	1-bit	result,	1-bit	carry
• Can	be	cascaded

Now	You	Try:	
1. Fill	in	Truth	Table
2. Create	Sum-of-Product	Form
3. Minimize	the	equation

• K-Maps
• Algebraic	Minimization

4. Draw	the	Circuits

18

4-Bit	Full	Adder
• Adds	two	4-bit	numbers	and	carry	in
• Computes	4-bit	result	and	carry	out
• Can	be	cascaded

A[4] B[4]

S[4]

Cout Cin

19

• Adds	two	4-bit	numbers,	along	with	carry-in
• Computes	4-bit	result	and	carry	out

• Carry-out	=	result	does	not	fit	in	4	bits

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout Cin

0																			0																			1																			10																			0																			1																			0

0																			1 0																			1

0																			0																			1																		0																		0

Subfrequency	Code	1	à A
Subfrequency	Code	2	à B	
Easy	to	remember:	Anne	Bracy

Are	you:
A. CS	Minor
B. CS	Major	in	Arts	&	Sciences
C. CS	Major	in	Engineering
D. MEng	student
E. Other

20

Binary	Operations
• Number	representations
• One-bit	and	four-bit	adders
• Negative	numbers	and	two’s	compliment
• Addition	(two’s	compliment)
• Subtraction	(two’s	compliment)	

21

First	Attempt:	Sign/Magnitude	Representation
• 1	bit	for	sign	(0=positive,	1=negative)
• N-1	bits	for	magnitude

Problem?
• Two	zero’s:	+0	different	than	-0	
• Complicated	circuits
• -2	+	1	=	???

22IBM	7090

0111	=
1111	=
0111	=	7
1111	=	-7

0000	=	+0
1000	=	-0

Positive	numbers	are	represented	as	usual
• 0	=	0000,	1	=	0001,	3	=	0011,	7	=	0111

Leading	1’s	for	negative	numbers
To	negate	any number:

• complement	all the	bits	(i.e.	flip	all	the	bits)
• then	add	1
• -1:	1	Þ 0001	Þ 1110	Þ 1111
• -3:	3	Þ 0011	Þ 1100Þ 1101
• -7:	7	Þ 0111	Þ 1000	Þ 1001
• -8:	8	Þ 1000	Þ 0111	Þ 1000
• -0:	0	Þ 0000	Þ 1111	Þ 0000	(this	is	good,	-0	=	+0)

23

Negatives
(two’s	complement:	flip	then	add	1):
0" =	1111	 -0	=	0000
1" =	1110	 -1	=	1111
2" =	1101	 -2	=	1110
3" =	1100	 -3	=	1101
4" =	1011	 -4	=	1100
5" =	1010	 -5	=	1011
6" =	1001	 -6	=	1010
7" =	1000	 -7	=	1001
8" = 0111 -8	=	1000

Non-negatives
(as	usual):

+0	=	0000
+1	=	0001
+2	=	0010
+3	=	0011
+4	=	0100
+5	=	0101
+6	=	0110
+7	=	0111
+8	=	1000

24

-1	=	 1111 =	15
-2	=	 1110 =	14
-3	=	 1101 =	13
-4	=	 1100 =	12
-5	=	 1011 =	11
-6	=	 1010 =	10
-7	=	 1001 =	9
-8	=	 1000 =	8
+7	= 0111 =	7
+6	= 0110 =	6
+5	= 0101 =	5
+4	= 0100 =	4
+3	= 0011 =	3
+2	= 0010 =	2
+1	= 0001 =	1
0	= 0000 =	0 26

4	bit	
Two’s	

Complement
-8	…	7

4	bit	
Unsigned	
Binary
0 …	15

Signed	two’s	complement
• Negative	numbers	have	leading	1’s
• zero	is	unique:	+0	=	- 0
• wraps	from	largest	positive	to	largest	negative

N	bits	can	be	used	to	represent	
• unsigned:	range	0…2N-1

– eg:	8	bits	Þ 0…255	
• signed	(two’s	complement):	-(2N-1)…(2N-1 - 1)

– E.g.:	8	bits	Þ (1000	0000)	…	(0111	1111)
– -128	…	127

27

Extending to	larger	size
• 1111	=	-1
• 1111	1111	=	-1
• 0111	=	7
• 0000	0111	=	7

Truncate to	smaller	size
• 0000	1111	=	15
• BUT, 0000 1111	=	1111	=	-1

28

=	Addition	as	usual,	ignore	the	sign	(it	just	works)

Examples
1	+	-1	=	
-3	+	-1	=	
-7	+		3	=	
7	+	(-3)	=	

What	is	wrong	with	the	following	additions?
7	+	1																		-7	+	-3																				-7	+	-1	

29

Why	create	a	new	circuit?
Just	use	addition	using	two’s	complement	math

• How?

32

Two’s	Complement	Subtraction
• Subtraction	is	addition with	a	negated	operand

– Negation	is	done	by	inverting	all	bits	and	adding	one
A	– B	=	A	+	(-B)	=	A	+	(B, +	1)

33

S0S1S2S3

A0

B0

A1

B1

A2

B2

A3

B3

Cout

Two’s	Complement	Subtraction
• Subtraction	is	addition	with	a	negated	operand

– Negation	is	done	by	inverting	all	bits	and	adding	one
A	– B	=	A	+	(-B)	=	A	+	(B, +	1)

34

S0S1S2S3

1

A0

B0

A1

B1

A2

B2

A3

B3

Cout

Binary	Operations
• Number	representations
• One-bit	and	four-bit	adders
• Negative	numbers	and	two’s	compliment
• Addition	(two’s	compliment)
• Subtraction	(two’s	compliment)	
• Detecting	and	handling	overflow

When	can	overflow occur?
• adding	a	negative	and	a	positive?

• adding	two	positives?

• adding	two	negatives?

36

When	can	overflow occur?

Rule	of	thumb:
• Overflow	happened	iff msb’s carry	in	!=	carry	out

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
SMSB

over
flow

AMSB BMSB

Cout_MSB Cin_MSB

MSB

Wrong
Sign

Wrong
Sign

Two’s	Complement	Adder	with	overflow	detection

S0S1S2S3

over
flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

Note:	4-bit	adder	for	illustrative	purposes	and	may	not	represent	the	optimal	design.

Digital	computers	are	implemented	via	logic	circuits	and	thus	
represent	all numbers	in	binary	(base	2).

We	write	numbers	as	decimal	or	hex	for	convenience	and	need	to	be	
able	to	convert	to	binary	and	back	(to	understand	what	the	computer	
is	doing!).

Adding	two	1-bit	numbers	generalizes	to	adding	two	numbers	of	any	
size	since	1-bit	full	adders	can	be	cascaded.	

Using	Two’s	complement	number	representation	simplifies	adder	
Logic	circuit	design	(0	is	unique,	easy	to	negate).	Subtraction	is	adding,	
where	one	operand	is	negated	(two’s	complement;	to	negate:	flip	the	
bits	and	add	1).

Overflow	if	sign	of	operands	A	and	B	!=	sign	of	result	S.	
Can	detect	overflow	by	testing		Cin !=	Cout of	the	most	significant	bit	
(msb),	which	only	occurs	when	previous	statement	is	true.

40

We	can	now	implement	combinational	logic	circuits
• Design	each	block

– Binary	encoded	numbers	for	compactness

• Decompose	large	circuit	into	manageable	blocks
– 1-bit	Half	Adders,	1-bit	Full	Adders,	

n-bit	Adders	via	cascaded	1-bit	Full	Adders,	...

• Can	implement	circuits	using	NAND	or	NOR	gates
• Can	implement	gates	using	use	PMOS	and	NMOS-
transistors

• And	can	add	and	subtract	numbers	(in	two’s	
compliment)!

• Next	time,	state	and	finite	state	machines…
41

