CS 3410: Computer System Organization and Programming

Anne Bracy
Computer Science
Cornell University

The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer.
“Can machines think?”

-- Alan Turing, 1950

Computing Machinery and Intelligence
Enigma machine
Used by the Germans during World War II to encrypt and exchange secret messages

The Bombe
used by the Allies to break the German Enigma machine during World War II
Turing Machine
1936

= abstract model for CPU that can simulate any algorithm
Who are you?

• Demographics
 ▪ Introduce yourself to the people next to you

 “Sometimes it is the people that no one imagines anything of who do the things that no one can imagine.” – Alan Turing

• Turing Award Winners?
Course Objective

• Understand the HW / SW interface software
 ▪ How a processor works
 ▪ How a computer is organized

• Establish a foundation for building applications
 ▪ How to write a good program
 • Good = correct, fast, and secure
 ▪ How to understand where the world is going

• Understand technology (past, present, future)
What is this?

#include <stdio.h>

int main() {
 printf("Hello world!\n");
 return 0;
}

How does it work?
I’m glad you asked...

 15 weeks later and you’ll know!
 “I know Kung Fu.”
Compilers & Assemblers

C

```
int x = 10;
x = 2 * x + 15;
```

MIPS assembly language

```
addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15
```

MIPS machine language

```
op = addi  r0  r5  10
001000000000010100000000000001010
0000000000000101001010010000100000
001000001010010100000000000001111

op = addi  r5  r5  15
```

Everything is a number!
How to Design a Simple Processor

00: addi r5, r0, 10
04: muli r5, r5, 2
08: addi r5, r5, 15
Instruction Set Architecture (ISA)

• abstract interface between hardware and the lowest level software

• user portion of the instruction set plus the operating system interfaces used by application programmers
Overview

- Application
- Operating System
 - Compiler
 - Firmware
- Instruction Set Architecture
- Memory system
- I/O system
 - Datapath & Control
 - Digital Design
 - Circuit Design
Covered in this course

Application

Operating System

Compiler

Firmware

Memory system

CPU

I/O system

Datapath & Control

Digital Design

Circuit Design

Instruction Set Architecture
Where did it begin?

- Electrical Switch
 - On/Off
 - Binary

- Transistor

The first transistor on a workbench at AT&T Bell Labs in 1947
Moore’s Law

• 1965
 - # of transistors integrated on a die doubles every 18-24 months (i.e., grows exponentially with time)

• Amazingly visionary
 - 2300 transistors, 1 MHz clock (Intel 4004) - 1971
 - 16 Million transistors (Ultra Sparc III)
 - 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001
 - 55 Million transistors, 3 GHz, 130nm technology, 250mm² die (Intel Pentium 4) – 2004
 - 290+ Million transistors, 3 GHz (Intel Core 2 Duo) – 2007
 - 721 Million transistors, 2 GHz (Nehalem) - 2009
 - 1.4 Billion transistors, 3.4 GHz Intel Haswell (Quad core) – 2013
Microprocessor Transistor Counts 1971-2011 & Moore’s Law

curve shows transistor count doubling every two years

Date of introduction

Transistor count
Processor Performance Increase
Then and Now

- The first transistor
 - One workbench at AT&T Bell Labs
 - 1947
 - Bardeen, Brattain, and Shockley

- Intel Haswell
 - 1.4 billion transistors
 - 177 square millimeters
 - Four processing cores

What are we doing with all these transistors?
Computer System Organization
Reflect

Why take this course?

Basic knowledge needed for *all* other areas of CS:
operating systems, compilers, ...

Levels are not independent
hardware design \leftrightarrow software design \leftrightarrow performance

Crossing boundaries is hard but important
device drivers

Good design techniques
abstraction, layering, pipelining, parallel vs. serial, ...

Understand where the world is going

The Mysteries of Computing will be revealed!