GPUs

Prof. Hakim Weatherspoon
CS 3410, Spring 2015
Computer Science
Cornell University
Announcements

Project 3 Cache Race Games night Monday, May 4th, 5pm

- Come, eat, drink, have fun and be merry!
- Location: B17 Upson Hall

Prelim 2: **Thursday**, April 30th in evening

- Time and Location: **7:30pm sharp** in Statler Auditorium
- Old prelims are online in CMS
- Prelim Review Session:
 - **TODAY**, Tuesday, April 28, 7-9pm in B14 Hollister Hall

Project 4:

- Design Doc due May 5th, bring design doc to mtg May 4-6
- **Demos**: May 12 and 13
- **Will not be able to use slip days**
Announcements

Prelim2 Topics

- Lecture: Lectures 10 to 24
- Data and Control Hazards (Chapters 4.7-4.8)
- RISC/CISC (Chapters 2.16-2.18, 2.21)
- Calling conventions and linkers (Chapters 2.8, 2.12, Appendix A.1-6)
- Caching and Virtual Memory (Chapter 5)
- Multicore/parallelism (Chapter 6)
- Synchronization (Chapter 2.11)
- Traps, Exceptions, OS (Chapter 4.9, Appendix A.7, pp 445-452)

- HW2, Labs 3/4, C-Labs 2/3, PA2/3

- Topics from Prelim1 (not the focus, but some possible questions)
GPUs
The supercomputer in your laptop

GPU: Graphics processing unit

Very basic till about 1999

Specialized device to accelerate display

Then started changing into a full processor

2000-....: Frontier times
Parallelism

CPU: Central Processing Unit
GPU: Graphics Processing Unit
Parallelism

GPU parallelism is similar to multicore parallelism

Key: How to gang schedule thousands of threads on thousands of cores?

Hardware multithreading with thousands of register sets

GPU Hardware multithreads (like multicore Hyperthreads)

- Multithread + extra PCs and registers – dependency logic
- Illusion of thousands of cores
- Fine grain hardware multithreading - Easier to keep pipelines full
GPU Architectures

Processing is highly data-parallel
- GPUs are highly multithreaded
- Use thread switching to hide memory latency
 - Less reliance on multi-level caches
- Graphics memory is wide and high-bandwidth

Trend toward general purpose GPUs
- Heterogeneous CPU/GPU systems
- CPU for sequential code, GPU for parallel code

Programming languages/APIs
- DirectX, OpenGL
- C for Graphics (Cg), High Level Shader Language (HLSL)
- Compute Unified Device Architecture (CUDA)
GPU-type computation offers higher GFlops
GPUs: Faster than Moore’s Law

Moore’s Law is for Wimps?!
Programmable Hardware

- Started in 1999
- Flexible, programmable
 - Vertex, Geometry, Fragment Shaders
- And much faster, of course

 - 1999 GeForce256: 0.35 Gigapixel peak fill rate
 - 2001 GeForce3: 0.8 Gigapixel peak fill rate
 - 2003 GeForceFX Ultra: 2.0 Gigapixel peak fill rate
 - ATI Radeon 9800 Pro: 3.0 Gigapixel peak fill rate
 - 2006 NV60: ... Gigapixel peak fill rate
 - 2009 GeForce GTX 285: 10 Gigapixel peak fill rate
 - 2011
 - GeForce GTC 590: 56 Gigapixel peak fill rate
 - Radeon HD 6990: 2x26.5
 - 2012
 - GeForce GTC 690: 62 Gigapixel/s peak fill rate
Around 2000

Fixed function pipeline

{ vertices } → Vertex shader → Shape assembly → Geometry shader

Tests and Blending → Fragment shader → Rasterization
Around 2005

Programmable vertex and pixel processors

G70 (Based on NV40): 2005
Post 2006: Unified Architecture
Why?

- Parallelism: thousands of cores
- Pipelining
- Hardware multithreading
- Not multiscale caching
 - Streaming caches
- Throughput, not latency
<table>
<thead>
<tr>
<th>Single Instruction</th>
<th>Multiple Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Data</td>
<td>Single Data</td>
</tr>
<tr>
<td>(SISD)</td>
<td>(MISD)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Instruction</td>
<td>Multiple Instruction</td>
</tr>
<tr>
<td>Multiple Data</td>
<td>Multiple Data</td>
</tr>
<tr>
<td>(SIMD)</td>
<td>(MIMD)</td>
</tr>
</tbody>
</table>
MIMD array of SIMD procs
Grids, Blocks, and Threads

- Grid
 - Block (0, 0)
 - Shared Memory
 - Registers
 - Thread (0, 0) → Thread (1, 0)
 - Block (1, 0)
 - Shared Memory
 - Registers
 - Thread (0, 0) → Thread (1, 0)

- Host
 - Global Memory
 - Constant Memory
CUDA Memory

- Faster, per-block
- Fastest, per-thread
- Slower, global
- Read-only, cached
Heterogeneous Computing

Host: the CPU and its memory

Device: the GPU and its memory

Shuang Zhao, Cornell University, 2014
Programming using CUDA

Compute Unified Device Architecture

do_something_on_host();
kernel<<<nBlk, nTid>>>(args);
cudaDeviceSynchronize();
do_something_else_on_host();

Highly parallel

Shuang Zhao, Cornell University, 2014
Hardware Thread Organization

Threads in a block are partitioned into warps

- All threads in a warp execute in a Single Instruction Multiple Data, or SIMD, fashion
- All paths of conditional branches will be taken
- Warp size varies, many graphics cards have 32

No guaranteed execution ordering between warps

Shuang Zhao, Cornell University, 2014
Branch Divergence

Threads in one warp execute very different branches
Significantly harms the performance!

Simple solution:

• Reordering the threads so that all threads in each block are more likely to take the same branch
• Not always possible
Example: NVIDIA Tesla

Streaming multiprocessor

8 × Streaming processors
Example: NVIDIA Tesla

Streaming Processors

- Single-precision FP and integer units
- Each SP is fine-grained multithreaded

Warp: group of 32 threads

- Executed in parallel, SIMD style
 - 8 SPs
 - \times 4 clock cycles
- Hardware contexts for 24 warps
 - Registers, PCs, ...
single-threaded free lunch
The timeline shows the evolution of computing technology from the 1970s to the 2010s. It highlights the 'single-threaded free lunch' period, followed by 'multicore' and the transition to 'cloud-core' and 'hetero-core'. The timeline predicts a future phase labeled 'Exit Moore', indicating a shift away from traditional Moore's Law.