Traps, Exceptions, System Calls,
& Privileged Mode

Deniz ALTINBUKEN
CS 3410, Spring 2015
Computer Science
Cornell University

P&H Chapter 4.9, pages 445-452, appendix A.7

Heartbleed Security Bug

Heartbleed Security Bug v

Heartbleed is a security bug disclosed in April 2014 in
the open-source OpenSSL cryptography library, widely
used to implement the Internet's Transport Layer

Security (TLS) protocol.

“...worst vulnerability found since commercial traffic
began to flow over the internet.”

“17% (0.5 million) secure web servers vulnerable to
bug.” Netcraft Ltd.; Apr 8, 2014

Amazon, Akamai, GitHub, Wikipedia, etc. affected!

Heartbleed Security Bug v

How does it work?

 “Buffer over-read”

Send me this 5
letter word if you
are alive: “Phone”

Send me this 1000
letter word if you
are alive: “Phone”

Phone Alice passwd
123456 Bob passwd
654321 Server
passwd ...

Heartbleed Security Bug v

Heartbeat Protocol:
* Client sends buffer and the length of buffer
e Server writes buffer in memory
* Returns length of characters from memory

 Malloc/Free did not clear memory
e Unauthenticated users can send a heartbeat

Server can return sensitive information
present in memory!

Takeaway v

 Worst Internet security vulnerability found

vet due systems practices 101 that we learn in
CS3410, lack of bounds checking!

* Lab 3: Similar bug/vulnerability due to “Buffer
overflow”
* Browser implementation lacks bounds checking

 Overwrite return address in memory using a smart
input!

Outline for Today

* How do we protect processes from one
another?

* Skype should not crash Chrome.

* How do we protect the operating system (OS)
from other processes?

 Chrome should not crash the computer!

* How does the CPU and OS (software) handle
exceptional conditions?

* Division by O, Page Fault, Syscall, etc.

Outline for Today

 How do we protect processes from one

another?
* Skype should not crash Chrome.

* How do we protect the operating system (OS)

from other processes?
 Chrome should not crash the computer!

* How does the CPU and OS (software) handle
exceptional conditions?
* Division by O, Page Fault, Syscall, etc.

Operating System

Operating System

on the computer.

* Many processes running at the same time,
requiring resources

* CPU, Memory, Storage, etc.

* The Operating System multiplexes these
resources amongst different processes,
and isolates and protects processes from
one another!

Operating System

* Safe control transfer between processes
* [solation (memory, registers) of processes

untrusted {

trusted

P1||P2||P3]||P4

VM filesystem net

05 driver driver

MMU CPU disk netw

card

L software

:I— hardware

Which statement is FALSE?

A) OS is always in the Hard Disk.
B) OS is always in Memory.
C) All processes can access the OS code.

D) OS provides a consistent APl to be used by
other processes.

E) OS manages the CPU, Memory, Devices,
and Storage.

Outline for Today

* How do we protect the operating system (OS)
from other processes?

 Chrome should not crash the computer!

* How does the CPU and OS (software) handle
exceptional conditions?

* Division by O, Page Fault, Syscall, etc.

Privileged (Kernel) Mode

Privileged Mode

* Only privileged (and trusted!) processes can
access & change important things.

* Editing TLB, Page Tables, OS code, Ssp, Sfp...

 |f an untrusted process could change Ssp,
Sfp, and Sgp, OS would crash!

Privileged Mode

How can we get the privileged mode to work?

Attempt #1:

 Make privileged instructions and registers
available only to “OS Code”!

 “OS Code”=>
address

Privileged Mode

Would making privileged instructions and registers
available only to “OS Code” work?

A) Will work great!
B) Will work, but performance will be slow!

C) Will not work because any process can jump into
OS code

D) Will not work because process can access all
registers

E) Whatever, | am bored!

Privileged Mode

How can we get the privileged mode to work?

Attempt #1:

* Make privileged instructions and registers
available only to “OS Code”

* “OS Code”-> resides in memory at preset virtual
address

Does not work:
* Process can still JAL into middle of OS functions

* Process can still access and change memory, page
tables, ...

Privileged Mode

How can we get the privileged mode to work?

Attempt #2:
CPU Mode Bit in Privilege Level Status Register

Mode 0 = untrusted = user mode

* “Privileged” instructions and registers are disabled by
CPU

Mode 1 = trusted = kernel mode
* All instructions and registers are enabled

Privileged Mode

How can we get the privileged mode to work?

Boot sequence:

* |oad first sector of disk (containing OS code) to
predetermined address in memory

* Mode € 1; PC <& predetermined address
OS takes over...

* initializes devices, MMU, timers, etc.
* loads programs from disk, sets up page tables, etc.
* Mode € 0; PC < program entry point

Privileged Mode

If an untrusted process does not have privileges to
use system resources, how can it

* Use the screen to print?

* Send message on the network?

* Allocate pages?

* Schedule processes?

System Calls

System Calls

System call: Not just a function call
* Don’t let process ram jump just anywhere in OS code
* OS can’t trust process’ registers (sp, fp, gp, etc.)

SYSCALL instruction: safe transfer of control to OS
* Mode <& < syscall; PC € exception vector

MIPS system call convention:
* Exception handler saves temp regs, saves ra, ...

* but: SvO = system call number, which specifies the
operation the application is requesting

User Application

SYSCALL!

OxFFFFFFfC

6x80000000
OXTFFFFFfC

0x10000000

0x00400000
0Xx00000000

System Call Interface

\’

system reserved

User Mode

top

printf.c

——>Implementation

system reserved

of printf() syscall!

.data

text

bottom

Privileged (Kernel) Mode

System Calls

System call examples:
putc(): Print character to screen

* Need to multiplex screen between competing
processes

send(): Send a packet on the network
* Need to manipulate the internals of a device

sbrk(): Allocate a page
* Needs to update page tables & MMU

sleep(): putcurrent progto sleep, wake other
* Need to update page table base register

Invoking System Calls

int getc() {
asm("addiu $vo, $0, 4");
asm("syscall");

}

char *gets(char *buf) {
while (...) {
buf[i] = getc();
}
}

Libraries and Wrappers

Compilers do not emit SYSCALL instructions
* Compiler doesn’t know OS interface

Libraries implement standard API from system API

libc (standard C library):
* getc() = syscall
* sbrk() = syscall
* write() = syscall
» gets() 2 getc()
 printf() 2 write()
* malloc() = sbrk()

Where does the OS live?

In its own address space?
* But then syscall would have to switch to a different
address space
* Also harder to deal with syscall arguments passed as
pointers

So in the same address space as process
e Use protection bits to prevent user code from writing
kernel
* Higher part of virtual memory, lower part of physical
memory

Anatomy of a Process

OxFFFffffc top
system reserved
OX80000000
Ox7FFFFFfC
stack
\ 4
A
dynamic data (heap)

©Xx10000000 static data .data
Ox00400000 code (teXt) < .text
OX0000000O system reserved bottom

Full System Layout

Typically all kernel text, mostdata _ 05 Stack
At same virtual address in every 0S Heap
address space 0S Data
 Map kernel in contiguous physical exseeeeeee 0S Text
memory when boot loader puts ex7ffffffc
kernel into physical memory stack
\ 4
The OS is omnipresent and steps in T
where necessary to aid application
execution dynamic data (heap)
* Typically resides in high memory oxie000000 static data
. . de (text
When an application needs to 0x6o406000 code (text)
perform a privileged operation, it oyee000000| system reserved

needs to invoke the OS Virtual Memory

Full System Layout

OxFFFffffc OS Stack
OS Heap
OS Data
OS Text

0X80000000
Ox7FFFFFfC

OS Stack
0x10000000

OS Heap
0x00400000 OS Data

OS Text

system reserved Ox00. . .00
Virtual Memory Physical Memory

0x00000000

SYSCALL instruction

SYSCALL instruction does an atomic jump to a
controlled location (i.e. MIPS 0x8000 0180)

» Switches the sp to the kernel stack

Saves the o
Saves the o
Saves the o

d (user) SP value
d (user) PC value (= return address)
d privilege mode

Sets the new privilege mode to 1
Sets the new PC to the kernel syscall handler

SYSCALL instruction

Kernel system call handler carries out the desired
system call

* Saves callee-save registers

* Examines the syscall number
* Checks arguments for sanity
* Performs operation

e Stores result in vO

* Restores callee-save registers

* Performs a “return from syscall” (ERET) instruction,
which restores the privilege mode, SP and PC

IELGEVEY

(kernel) mode to enable the Operating
System (OS):
* provides isolation between processes

* protects shared resources

* provides safe control transfer

Outline for Today

* How do we protect processes from one

another?
* Skype should not crash Chrome.

* Operating System
« How do we protect the operating system (OS)
from other processes?
* Chrome should not crash the computer!
* Privileged Mode

* How does the CPU and OS (software) handle
exceptional conditions?
* Division by O, Page Fault, Syscall, etc.
* Traps, System calls, Exceptions, Interrupts

Terminology

Trap: Any kind of a control transfer to the OS
Syscall: Synchronous and planned, process-to-
kernel transfer

e SYSCALL instruction in MIPS (various on x86)
Exception: Synchronous but unplanned, process-
to-kernel transfer

* exceptional events: div by zero, page fault, page
protection err, ...

Interrupt: Asynchronous, device-initiated transfer

* e.g. Network packet arrived, keyboard event, timer
ticks

Exceptions

Exceptions
control flow.

Interrupt -> cause of control flow change external
Exception -> cause of control flow change internal
* Exception: Divide by 0, overflow
* Exception: Bad memory address
* Exception: Page fault
* Interrupt: 1/O interrupt (e.g. keyboard stroke)

We need both HW and SW to help resolve exceptions
* Exceptions are at the hardware/software boundary

Hardware/Software Boundary

Hardware support for exceptions

* Exception program counter (EPC)
— A 32-bit register to hold the addr of the affected instruction.
— Syscall case: Address of SYSCALL

* Cause register
— A register to hold the cause of the exception.
— Syscall case: 8, Sys

* Special instructions to load TLB
— Only do-able by kernel

Precise and imprecise exceptions

* In pipelined architecture

— Have to correctly identify PC of exception
— MIPS and modern processors support this

Exceptions

Code Stored in Memory

(also, data and stack)
compute
/ jump/branch
ffffc I top a r g e
N = S0 (zero) <
ul L S1 (Sat
0x100004PO| static data y lata reg(lster)-
Vgt o St Y {
— 5 $28'fssp)
S31 (Sra)
+
)
PAC - control
\ extend E
@ detect
hazard
Instruction T
Fetch -
IF/ID ID/EX

EPC

Cause

> alu - -
s!zll:k
o0 d 1 dOJt
X1/ aeeef. ::t:::): t;:
Stack, Data, Code
Stored in Memor :
= —|Write
4+ 4+
Execute ©f Memory of .
Back
EX/MEM MEM/WB

Hardware/Software Boundary

Precise exceptions: Hardware guarantees
(similar to a branch)
* Previous instructions complete
* Later instructions are flushed
* EPC and cause register are set
* Jump to prearranged address in OS
* When you come back, restart instruction

Disable exceptions while responding to one
— Otherwise can overwrite EPC and cause

Hardware/Software Boundary

What else requires both Hardware and
Software?

A) Virtual to Physical Address Translation
B) Branching and Jumping

C) Clearing the contents of a register

D) Pipelining instructions in the CPU

E) What are we even talking about?

Hardware/Software Boundary

Virtual to physical address translation!
Hardware

* CPU has a concept of operating in physical or virtual
mode.

* CPU helps manage the TLB.

 CPU raises page faults.

e CPU keeps Page Table Base Register (PTBR) and ProcessID
Software

* OS manages Page Table storage

 OS handles Page Faults

e OS updates Dirty and Reference bits in the Page Tables

 OS keeps TLB valid on context switch:

* Flush TLB when new process runs (x86)
» Store process id (MIPS)

Summary
Trap

* Any kind of a control transfer to the OS
Syscall

* Synchronous, process-initiated control transfer from
user to the OS to obtain service from the OS

* e.g. SYSCALL
Exception

* Synchronous, process-initiated control transfer from
user to the OS in response to an exceptional event

e e.g. Divide by zero, TLB miss, Page fault
Interrupt

* Asynchronous, device-initiated control transfer from
user to the OS

* e.g. Network packet, I/O complete

What is the difference between traps,
exceptions, interrupts, and system calls?

Hardware
CPU saves PC of exception instruction (EPC)

CPU Saves cause of the interrupt/privilege (Cause
register)

Switches the sp to the kernel stack

Saves t
Saves t
Saves t

Interrupts & Exceptions

ne o
ne o

ne o

d (user) SP value
d (user) PC value
d privilege mode

Sets the new privilege mode to 1

Sets the new PC to the kernel interrupt/exception
handler

Interrupts & Exceptions

Software
Kernel interrupt/exception handler handles the
event

e Saves all registers

* Examines the cause

* Performs operation required

e Restores all registers

* Performs a “return from interrupt” instruction, which
restores the privilege mode, SP and PC

Example: Clock Interrupt

Example: Clock Interrupt*®

* Every N cycles, CPU causes exception with Cause =
CLOCK_TICK

* OS canselect N to get e.g. 1000 TICKs per second
ktext 0x8000 0180
(step 1) save *everything* but SkO, Sk1 to 0xBO0O00000
(step 2) set up a usable OS context
(step 3) examine Cause register, take action
if (Cause == PAGE_FAULT) handle_pfault(BadVaddr)
else if (Cause == SYSCALL) dispatch_syscall(Sv0)
else if (Cause == CLOCK_TICK) schedule()

(step 4) restore registers and return to where process left off

* not the CPU clock, but a programmable timer clock

Scheduler

struct regs context[];
int ptbr[];
schedule() {
1 = current_process;
j = pick _some process();
if (i '= j) {
current_process = j;
memcpy(context[i], ©OxB00000OO)
memcpy (0xB0000OOO, context[j]);
asm(“mtco Context, ptbr[j]”);

Syscall vs. Exception vs. Interrupt

Same mechanisms, but...
Syscall saves and restores much less state
Others save and restore full processor state

Interrupt arrival is unrelated to user code

Takeaway
Traps are any transfer of control to the OS.

Exceptions are any unexpected change in
control flow.

Precise exceptions are necessary to
identify the exceptional instructions, cause
of exception, and where to continue
execution.

We need help of both hardware and
software (e.g. OS) to resolve exceptions.

IELGEVEY

To handle any exception or interrupt:

OS analyzes the Cause register

OS vectors into the appropriate exception
handler.

OS kernel handles the exception
Returns control to the same process

* Possibly kills the current process
* Possibly schedules another process

