
CS3410 Prelim 1 Review
2014 Spring

FSM
Design a circuit (with a finite state machine) for finding the each occurrence of a
specific pattern, 0110111 or 0110 in a very long stream of binary numbers.

Specifically, your circuit will process a very long stream of binary numbers,
b0b1b2b3.... You do not know how long the list will be. Your circuit will be given
the i-th binary number during the i- th clock cycle via the input B. If you have not
seen the pattern yet, then Found should be 0; otherwise, if bi-6bi-5bi-4bi-3bi-
2bi-1bi = 0110111 or bi-3bi-2bi-1bi = 0110 then your circuit should set the
output Found to 1. After finding the pattern 0110111, your circuit should go
back to either the init state or the first state after init so that the pattern can be
recognized again.

FSM
Design a circuit (with a finite state machine) for finding the each occurrence of a
specific pattern, 0110111 or 0110 in a very long stream of binary numbers.

Complete the finite state machine diagram above by drawing transition arrows,
and clearly labeling all transitions, inputs, and outputs. You are to build a
Moore-style finite state machine with a single bit B as input and a single bit
Found as output. You should label each state transition with the expected value
of input B and each state with the value of Found.

Hints: 1) Your circuit should work for list of numbers like 001101111 and
011011011101. 2) Recall that for a Moore machine, the outputs depends only
on the current state, and hence the output is written in the state circles.

Design a circuit (with a finite state machine) for finding the each occurrence of a
specific pattern, 0110111 or 0110 in a very long stream of binary numbers.

Performance

Name the three principal components of the runtime for a
program that we discussed in class. How do they combine to
yield runtime?

Performance

Name the three principal components of the runtime for a
program that we discussed in class. How do they combine to
yield runtime?

Instruction Count, CPI, and Clock Period (or Rate)

Runtime = Instruction count x CPI x Clock Period
- or -
Instruction count (instr) x CPI (cycles/instr)
 Clock Rate (cycles/sec)

Performance

Performance

1. Consider a non-pipelined single-cycle version of the datapath.
Identify the critical path and determine the optimal clock rate.
What is the CPI and MIPS?

2. non-pipelined multi-cycle

3. five stage pipeline

Performance

1. Consider a non-pipelined single-cycle version of the datapath.
Identify the critical path and determine the optimal clock rate.
What is the CPI and MIPS?

Memory path is the critical path
1000 ps is the optimal (i.e. minimum) clock period (this is the
same as a clock frequency of 1 GHz)

CPI = 1 (i.e. one cycle per instruction given a single-cycle
processor) MIPS = 1000 MIPS (i.e. 1000 x million [106]
instructions per second)

Performance

2. non-pipelined multi-cycle

Performance

3. five stage pipeline

Data Hazards

ADDIU r1, r0, 0x04
LW r3, 0(r1)
LW r4, 4(r1)
SLL r4, r4, 2
ADDU r4, r4, r3
SW r4, 8(r1)

Assume that a 5-stage pipelined MIPS processor does NOT account for
any pipeline data hazard (and cannot write to and read from the register
file during the same cycle). Rewrite the above instructions putting in
NOPs so that no errors will occur. Do not reorder instructions. What is
the minimal number of cycles it would take for the corrected code to
completely clear the MIPS pipeline?

Data Hazards
 ADDIU r1, r0, 0x04
 NOP
 NOP
 NOP
 LW r3, 0(r1) ; because r1
 LW r4, 4(r1)
 NOP
 NOP
 NOP
 SLL r4, r4, 2 ; because r4
 NOP
 NOP
 NOP
 ADDU r4, r4, r3 ; because r4
 NOP
 NOP
 NOP
 SW r4, 8(r1) ; because r4

It will take 22 cycles for the code to completely clear the MIPS pipeline

Data Hazards
Assume the pipeline now has a hazard detection unit and can automatically insert the
required NOPs (stalls) for correct execution.
Fill in the multi-clock cycle graph with the required stalls for the original instructions to
execute correctly. What is the minimal number of cycles it will take for the code to
completely clear the MIPS pipeline if the processor automatically inserts the required
NOPs

Data Hazards
Assume the pipeline now has a hazard detection unit and can automatically insert the
required NOPs (stalls) for correct execution.
Fill in the multi-clock cycle graph with the required stalls for the original instructions to
execute correctly. What is the minimal number of cycles it will take for the code to
completely clear the MIPS pipeline if the processor automatically inserts the required
NOPs

Data Hazards
Assume the pipeline now has a hazard detection unit and can automatically insert the
required NOPs (stalls) for correct execution.
Fill in the multi-clock cycle graph with the required stalls for the original instructions to
execute correctly. What is the minimal number of cycles it will take for the code to
completely clear the MIPS pipeline if the processor automatically inserts the required
NOPs

Stalled in ID waiting for WB to complete

Data Hazards
Assume the pipeline now has a hazard detection unit and can automatically insert the
required NOPs (stalls) for correct execution.
Fill in the multi-clock cycle graph with the required stalls for the original instructions to
execute correctly. What is the minimal number of cycles it will take for the code to
completely clear the MIPS pipeline if the processor automatically inserts the required
NOPs

Stalled in IF waiting for ID to clear

Data Hazards
Assume the pipeline now has a hazard detection unit and can automatically insert the
required NOPs (stalls) for correct execution.
Fill in the multi-clock cycle graph with the required stalls for the original instructions to
execute correctly. What is the minimal number of cycles it will take for the code to
completely clear the MIPS pipeline if the processor automatically inserts the required
NOPs

Waiting for IF to clear

Data Hazards

Assume that we have a pipeline that has both a forwarding unit
and hazard detection unit: The forwarding unit can automatically
resolve data hazards by forwarding values between stages.

Data Hazards

Assume that we have a pipeline that has both a forwarding unit
and hazard detection unit: The forwarding unit can automatically
resolve data hazards by forwarding values between stages.

Data Hazards

Assume that we have a pipeline that has both a forwarding unit
and hazard detection unit: The forwarding unit can automatically
resolve data hazards by forwarding values between stages.

Not ready until MEM can forward

Data Hazards

Assume that we have a pipeline that has both a forwarding unit
and hazard detection unit: The forwarding unit can automatically
resolve data hazards by forwarding values between stages.

Waiting for ID to clear

Data Hazards

Assume that we have a pipeline that has both a forwarding unit
and hazard detection unit: The forwarding unit can automatically
resolve data hazards by forwarding values between stages.

Waiting for IF to clear

Translate ASM to C
unsigned int r0=0,r1,r3,r4;

r1 = ?
r3 = ?
r4 = ?

Translate ASM to C
unsigned int r0=0,r1,r3,r4;

r1=r0+4;
r3=(*((unsigned int *)(r1+0)));
r4=(*((unsigned int *)(r1+4)));
r4=r4 << 2;
r4=r4+r3;
(*((unsigned int *)(r1+8)))=r4;

r1 = ?
r3 = ?
r4 = ?

Translate ASM to C
unsigned int r0=0,r1,r3,r4;

r1=4;
r3=(*((unsigned int *)4));
r4=(*((unsigned int *)8));
r4=r4 << 2;
r4=r4+r3;
(*((unsigned int *)12))=r4;

r1 = 4
r3 = 10
r4 = 30

30
5

10
40

