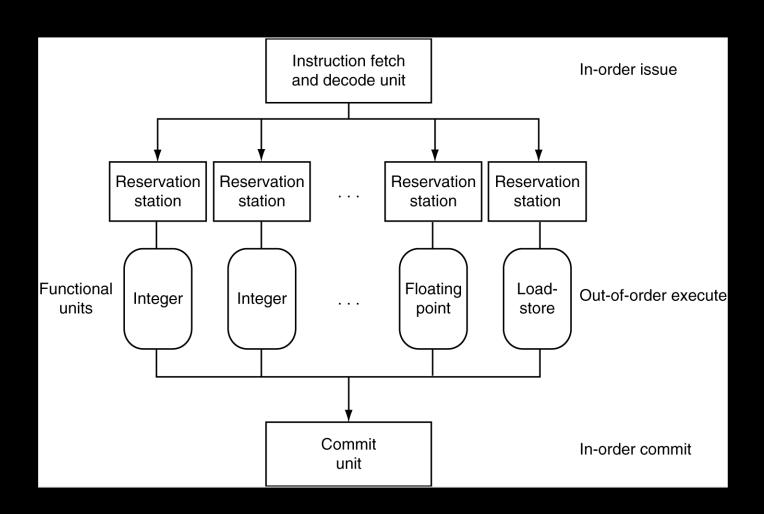
## **Multicore and Parallelism**

**CS 3410, Spring 2014** 


**Computer Science** 

**Cornell University** 

See P&H Chapter: 4.10, 1.7, 1.8, 5.10, 6.4, 2.11

# **Announcements**

# **Dynamic Multiple Issue**



## **Limits of Static Scheduling**

## Compiler scheduling for dual-issue MIPS...

```
lw $t0, 0($s1)  # load A
addi $t0, $t0, +1  # increment A
sw $t0, 0($s1)  # store A
lw $t1, 0($s2)  # load B
addi $t1, $t1, +1  # increment B
sw $t1, 0($s2)  # store B
```

# ALU/branch slot nop nop addi \$t0, \$t0, +1 nop addi \$t1, \$t1, +1 nop

```
Load/store slot
                        cycle
      $t0, 0($s1)
lw

nop
                         3
nop
      $t0,
             0(\$s1)
                         4
SW
      $t1,
             0(\$s2)
lw
                         5
                          6
nop
nop
             0(\$s2)
      $t1,
                          8
SW
```

# Does Multiple Issue Work?

Q: Does multiple issue / ILP work?

A: Kind of... but not as much as we'd like Limiting factors?

- Programs dependencies
- Hard to detect dependencies 
   be conservative
  - e.g. Pointer Aliasing: A[0] += 1; B[0] \*= 2;
- Hard to expose parallelism
  - Can only issue a few instructions ahead of PC
- Structural limits
  - Memory delays and limited bandwidth
- Hard to keep pipelines full

## **Administrivia**

#### Next few weeks

- Week 12 (Apr 22): Lab4 release and Proj3 due Fri
  - Note Lab 4 is now IN CLASS
- Week 13 (Apr 29): Proj4 release, <del>Lab4 due Tue</del>, Prelim2
- Week 14 (May 6): Proj3 tournament Mon, Proj4 design doc due

## Final Project for class

Week 15 (May 13): Proj4 due Wed

# Today

Many ways to improve performance Multicore

Performance in multicore Synchronization

Next 2 lectures: synchronization and GPUs

# How to improve performance?

#### We have looked at

Pipelining

- To speed up:
  - Deeper pipelining
  - Make the clock run faster
  - Parallelism
    - Not a luxury, a necessity

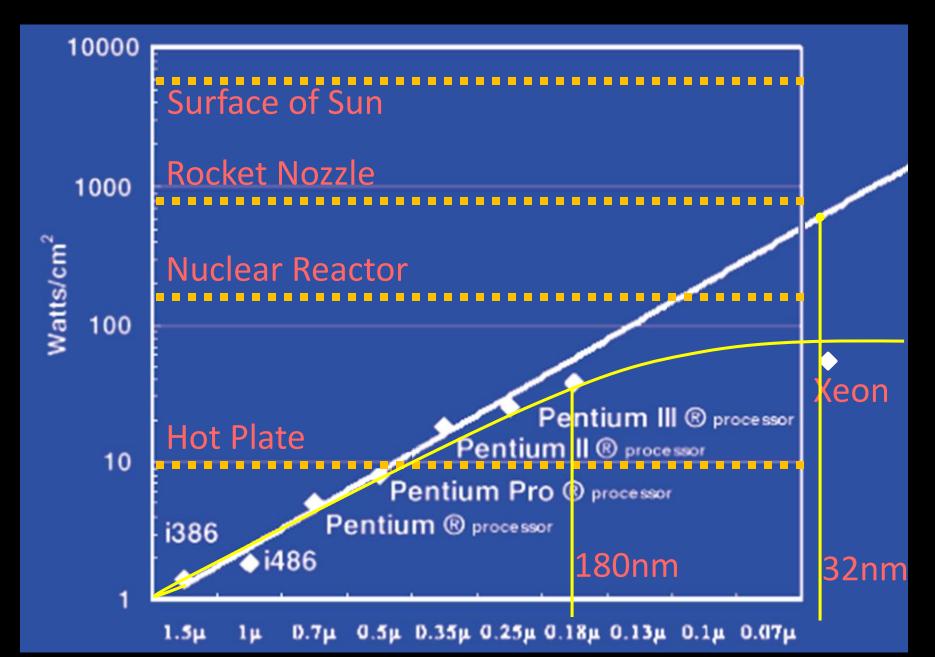
# Why Multicore?

#### Moore's law

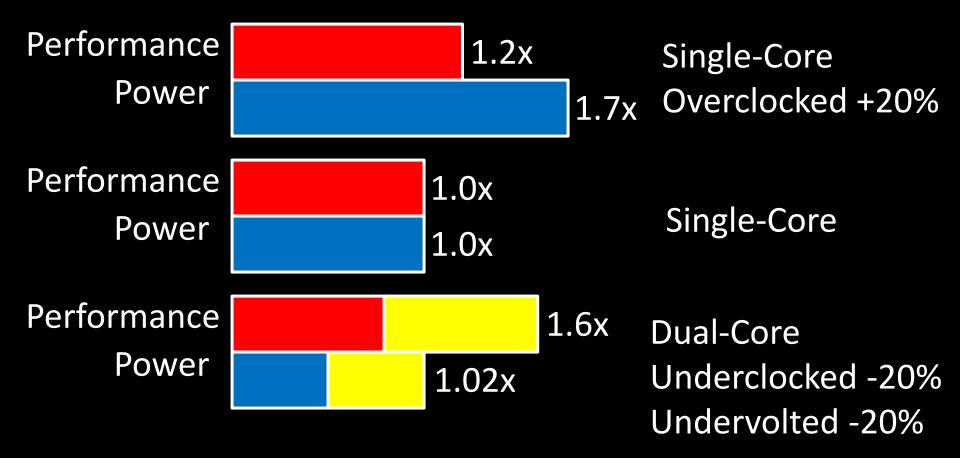
- A law about transistors
- Smaller means more transistors per die
- And smaller means faster too

But: need to worry about power too...

## **Power Wall**

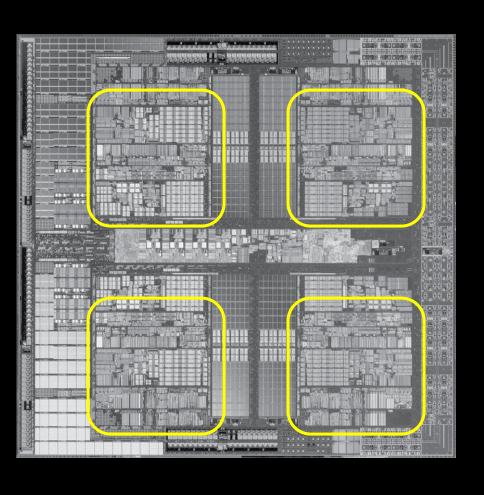

Power = capacitance \* voltage<sup>2</sup> \* frequency approx. capacitance \* voltage<sup>3</sup>

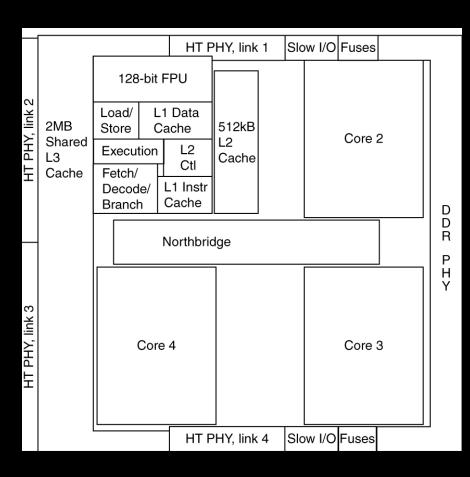
Reducing voltage helps (a lot) Better cooling helps


## The power wall

- We can't reduce voltage further leakage
- We can't remove more heat

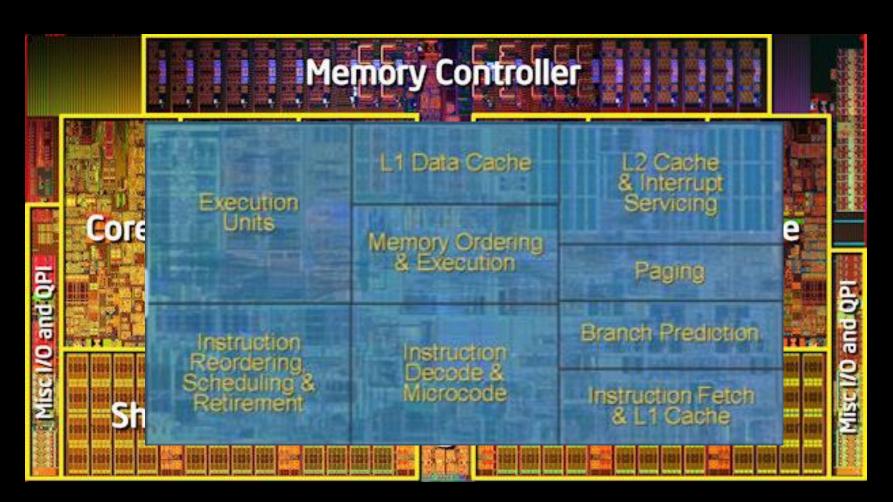
## **Power Limits**





# Why Multicore?



## **Inside the Processor**


## AMD Barcelona Quad-Core: 4 processor cores



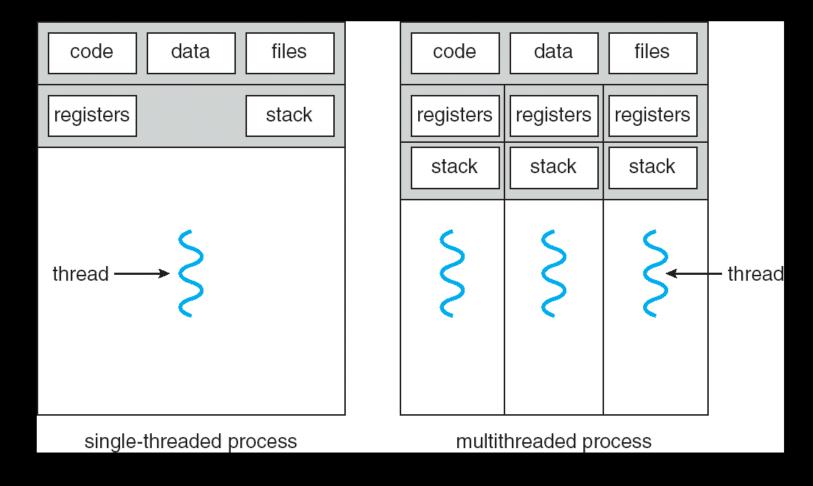


## **Inside the Processor**

#### Intel Nehalem Hex-Core



# Hardware multithreading


## Hardware multithreading

Increase utilization with low overhead

Switch between hardware threads for stalls

## What is a thread?

Process includes multiple threads, code, data and OS state



# Hardware multithreading

Fine grained vs. Coarse grained hardware multithreading

Simultaneous multithreading (SMT)

Hyperthreads (Intel simultaneous multithreading)

Need to hide latency

# Hardware multithreading

Fine grained vs. Coarse grained hardware multithreading

Fine grained multithreading

Switch on each cycle

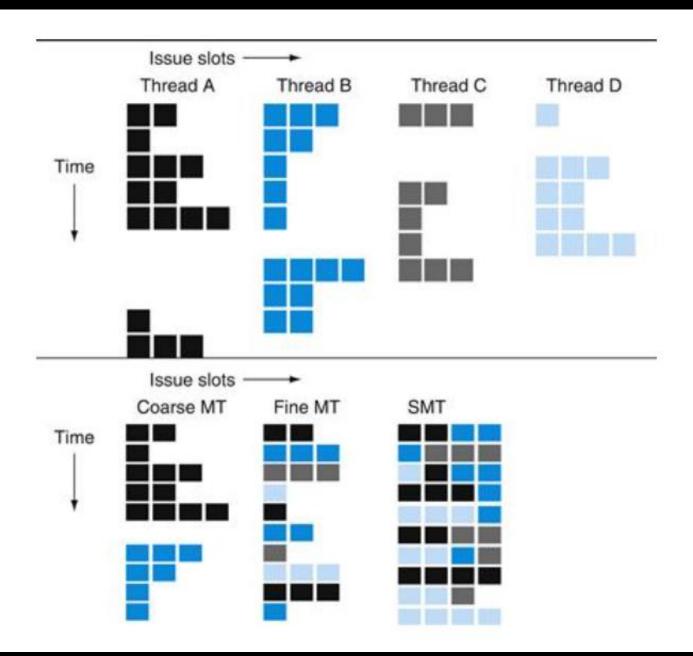
Pros: Can hide very short stalls

Cons: Slows down every thread

Coarse grained multithreading

Switch only on quite long stalls

Pros: removes need for very fast switches


Cons: flush pipeline, short stalls not handled

# Simultaneous multithreading

#### **SMT**

- Leverages multi-issue pipeline with dynamic instruction scheduling and ILP
- Exploits functional unit parallelism better than single threads
- Always running multiple instructions from multiple threads
  - No cost of context switching
  - Uses dynamic scheduling and register renaming through reservation stations

Can use all functional units very efficiently



## Hyperthreading

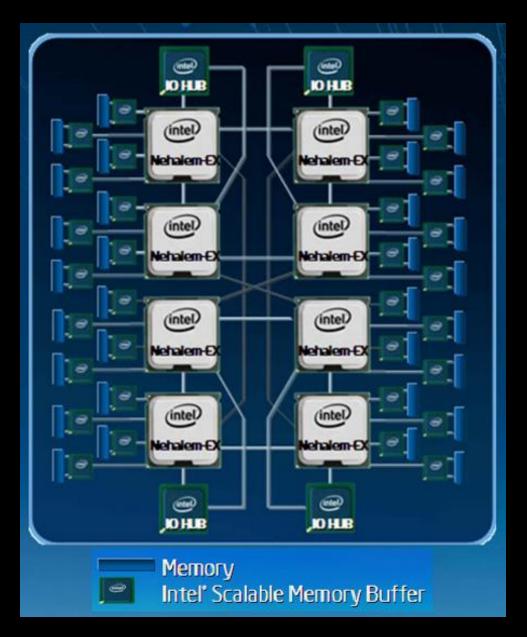
#### Multi-Core vs. Multi-Issue vs. HT

Programs:

Num. Pipelines:

Pipeline Width:

| N | 1 | N |
|---|---|---|
| N | 1 | 1 |
| 1 | N | N |


#### Hyperthreads

- HT = Multilssue + extra PCs and registers dependency logic
- HT = MultiCore redundant functional units + hazard avoidance

#### Hyperthreads (Intel)

- Illusion of multiple cores on a single core
- Easy to keep HT pipelines full + share functional units

## Example: All of the above



8 multiprocessors4 core per multiprocessor2 HT per core

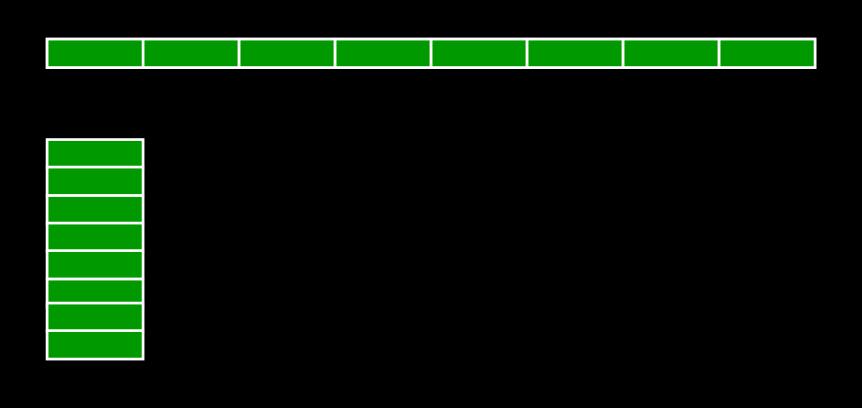
Dynamic multi-issue: 4 issue

Pipeline depth: 16

Note: each processor may have multiple processing cores, so this is an example of a multiprocessor multicore hyperthreaded system

## **Parallel Programming**

Q: So lets just all use multicore from now on!


A: Software must be written as parallel program

#### Multicore difficulties

- Partitioning work, balancing load
- Coordination & synchronization
- Communication overhead
- How do you write parallel programs?
  - ... without knowing exact underlying architecture?

# **Work Partitioning**

Partition work so all cores have something to do



# **Load Balancing**

Need to partition so all cores are actually working

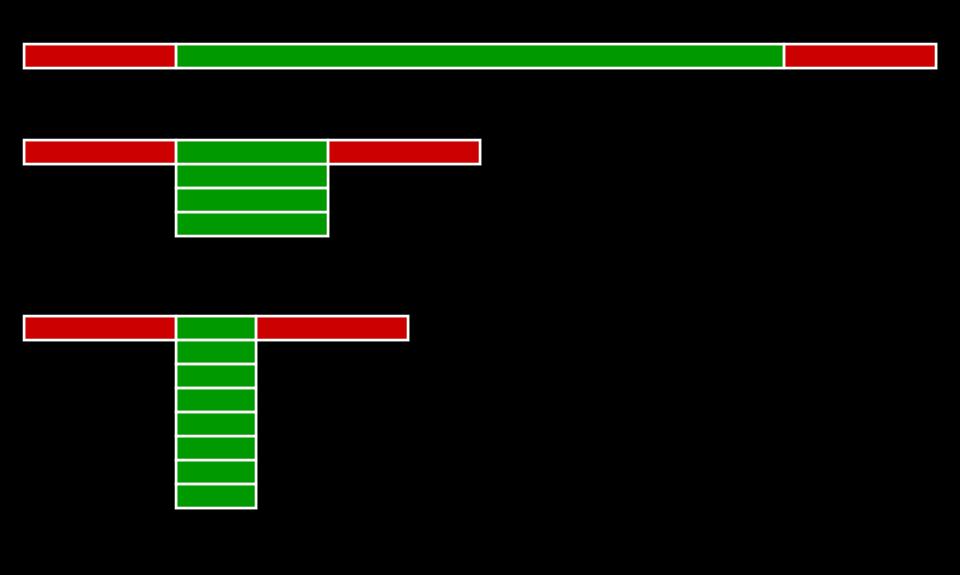


## Amdahl's Law

If tasks have a serial part and a parallel part... Example:

step 1: divide input data into *n* pieces

step 2: do work on each piece


step 3: combine all results

Recall: Amdahl's Law

As number of cores increases ...

- time to execute parallel part? goes to zero
- time to execute serial part? Remains the same
- Serial part eventually dominates

# Amdahl's Law



## Pitfall: Amdahl's Law

Execution time after improvement = affected execution time

amount of improvement

+ execution time unaffected

$$T_{improved} = \frac{T_{affected}}{improvement factor} + T_{unaffected}$$

## Pitfall: Amdahl's Law

Improving an aspect of a computer and expecting a proportional improvement in overall performance

$$T_{improved} = \frac{T_{affected}}{improvement factor} + T_{unaffected}$$

Example: multiply accounts for 80s out of 100s

 How much improvement do we need in the multiply performance to get 5x overall improvement?

$$20 = 80/n + 20 - Can't be done!$$

# Scaling Example

Workload: sum of 10 scalars, and 10 × 10 matrix sum

Speed up from 10 to 100 processors?

Single processor: Time =  $(10 + 100) \times t_{add}$ 

### 10 processors

- Time =  $100/10 \times t_{add} + 10 \times t_{add} = 20 \times t_{add}$
- Speedup = 110/20 = 5.5

## 100 processors

- Time =  $100/100 \times t_{add} + 10 \times t_{add} = 11 \times t_{add}$
- Speedup = 110/11 = 10

Assumes load can be balanced across processors

# Scaling Example

What if matrix size is 100 × 100?

Single processor: Time =  $(10 + 10000) \times t_{add}$ 10 processors

- Time =  $10 \times t_{add} + 10000/10 \times t_{add} = 1010 \times t_{add}$
- Speedup = 10010/1010 = 9.9

## 100 processors

- Time =  $10 \times t_{add} + 10000/100 \times t_{add} = 110 \times t_{add}$
- Speedup = 10010/110 = 91

Assuming load balanced

# Scaling

Strong scaling vs. weak scaling

Strong scaling: scales with same problem size

Weak scaling: scales with increased problem size

# Parallelism is a necessity

Necessity, not luxury
Power wall

Not easy to get performance out of

Many solutions

Pipelining

Multi-issue

Hyperthreading

Multicore

## **Parallel Programming**

Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

#### Multicore difficulties

- Partitioning work
- Coordination & synchronization
- Communications overhead HW
- Balancing load over cores
- How do you write parallel programs?
  - ... without knowing exact underlying architecture?

SW

Your

career...

# Synchronization

## Parallelism and Synchronization

How do I take advantage of *parallelism*?
How do I write (**correct**) parallel programs?

What primitives do I need to implement correct parallel programs?

## **Topics**

### **Understand Cache Coherency**

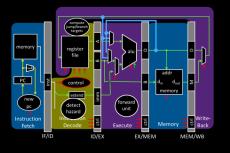
#### Synchronizing parallel programs

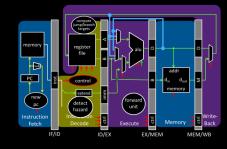
- Atomic Instructions
- HW support for synchronization

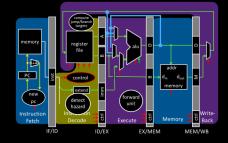
### How to write parallel programs

- Threads and processes
- Critical sections, race conditions, and mutexes

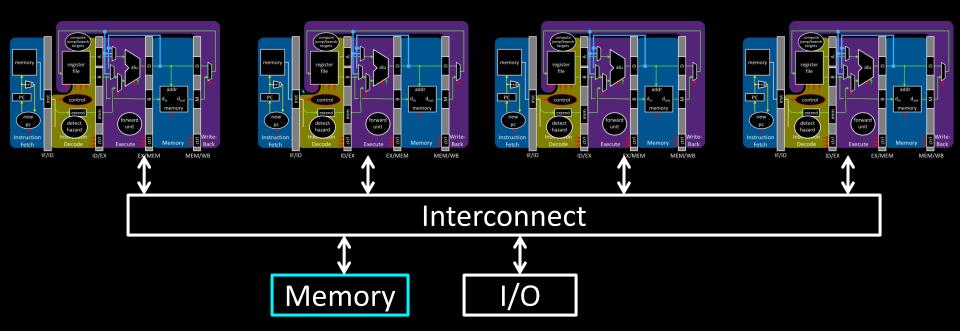
Cache Coherency Problem: What happens when two or more processors cache *shared* data?


Cache Coherency Problem: What happens when two or more processors cache *shared* data?


i.e. the view of memory held by two different processors is through their individual caches


As a result, processors can see different (incoherent) values to the *same* memory location

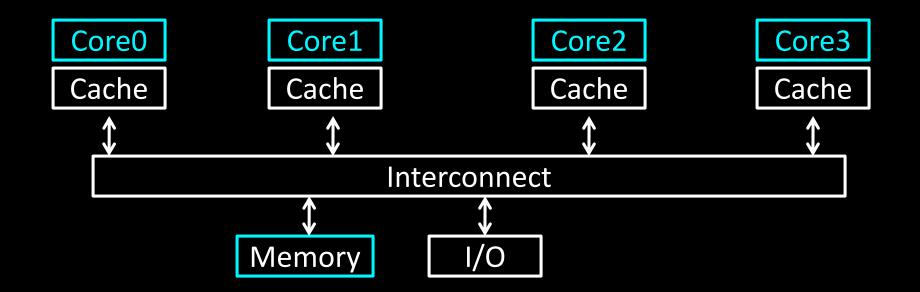
Each processor core has its own L1 cache







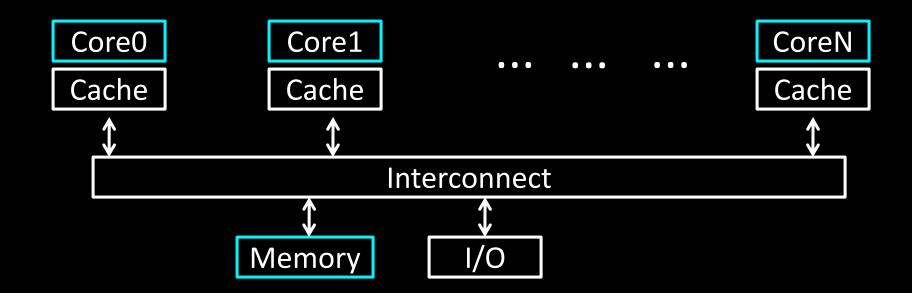




Each processor core has its own L1 cache



# **Shared Memory Multiprocessors**

### **Shared Memory Multiprocessor (SMP)**

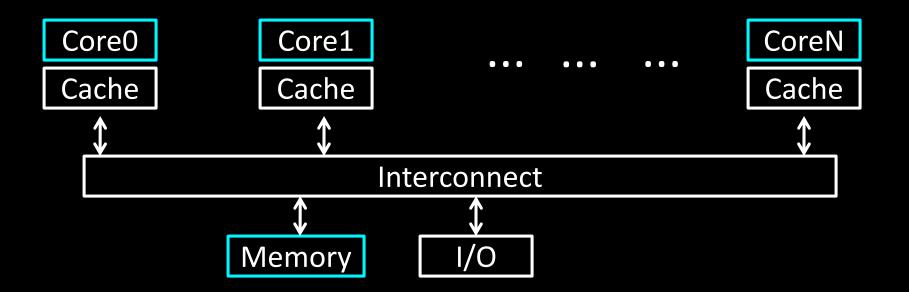

- Typical (today): 2 8 cores each
- HW provides single physical address space for all processors
- Assume uniform memory access (UMA) (ignore NUMA)



# **Shared Memory Multiprocessors**

**Shared Memory Multiprocessor (SMP)** 

- Typical (today): 2 8 cores each
- HW provides single physical address space for all processors
- Assume uniform memory access (ignore NUMA)




# Cache Coherency Problem

```
Thread A (on Core0) Thread B (on Core1) for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) { x = x + 1; x = x + 1; }
```

What will the value of x be after both loops finish?

Start: x = 0



# iClicker

```
Thread A (on Core0) Thread for(int i = 0, i < 5; i++) { for(int x = x + 1; x }
```

```
Thread B (on Core1)
for(int j = 0; j < 5; j++) {
    x = x + 1;
}
```

# Cache Coherency Problem

```
Thread A (on Core0) Thread B (on Core1) for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) { LW $t0, addr(x) LW $t1, addr(x) ADDIU $t0, $t0, 1 ADDIU $t1, $t1, 1 SW $t0, addr(x) } SW $t1, addr(x) }
```

## iClicker

```
Thread A (on Core0) Thread for(int i = 0; i < 5; i++) { for(int x = x + 1; x }
```

```
Thread B (on Core1)

for(int j = 0; j < 5; j++) {
    x = x + 1;
}
```

What can the value of x be after both loops finish?

- a) 6
- b) 8
- c) 10
- d) All of the above
- e) None of the above

## Cache Coherence Problem

Suppose two CPU cores share a physical address space

Write-through caches

| Time<br>step                          | Event         |          | CPU A's<br>cache | CPU B's cache | Memory   |  |
|---------------------------------------|---------------|----------|------------------|---------------|----------|--|
| 0                                     |               |          |                  |               | 0        |  |
| 1                                     | CPU A reads X |          | 0                |               | 0        |  |
| 2                                     | CPU B reads X |          | 0                | 0             | 0        |  |
| 3                                     | CPU A writes  | 1 to X   | 1 0              |               | 1        |  |
| Core                                  | 0 C           | ore1     | • • •            | • • • • • • • | CoreN    |  |
| Cache                                 |               |          |                  | Cache         |          |  |
| <b>1</b>                              |               | <b>1</b> |                  |               | <b>\</b> |  |
| Interconnect                          |               |          |                  |               |          |  |
| T T T T T T T T T T T T T T T T T T T |               |          |                  |               |          |  |

## Two issues

Coherence

What values can be returned by a read

Consistency

When a written value will be returned by a read

## **Coherence Defined**

Informal: Reads return most recently written value

Formal: For concurrent processes P<sub>1</sub> and P<sub>2</sub>

- P writes X before P reads X (with no intervening writes)
  - ⇒ read returns written value
- P<sub>1</sub> writes X before P<sub>2</sub> reads X
  - ⇒ read returns written value
- P<sub>1</sub> writes X and P<sub>2</sub> writes X
  - ⇒ all processors see writes in the same order
    - all see the same final value for X
    - Aka write serialization

## **Coherence Defined**

## Formal: For concurrent processes P<sub>1</sub> and P<sub>2</sub>

- P writes X before P reads X (with no intervening writes)
  - ⇒ read returns written value
    - (preserve program order)
- P<sub>1</sub> writes X before P<sub>2</sub> reads X
  - ⇒ read returns written value
    - (coherent memory view, can't read old value forever)
- P<sub>1</sub> writes X and P<sub>2</sub> writes X
  - ⇒ all processors see writes in the same order
    - all see the same final value for X
    - Aka write serialization
    - (else X can see P2's write before P1 and Y can see the opposite; their final understanding of state is wrong)

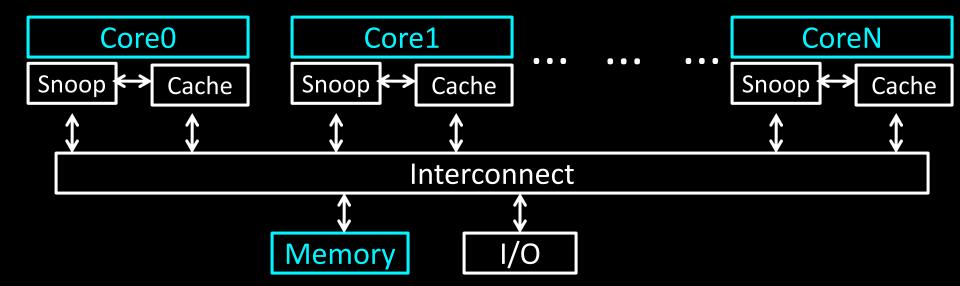
### **Cache Coherence Protocols**

Operations performed by caches in multiprocessors to ensure coherence and support shared memory

- Migration of data to local caches
  - Reduces bandwidth for shared memory (performance)
- Replication of read-shared data
  - Reduces contention for access (performance)

### **Snooping** protocols

Each cache monitors bus reads/writes (correctness)


## **Snooping**

#### **Snooping** for Hardware Cache Coherence

All caches monitor bus and all other caches

### Write invalidate protocol

- Bus read: respond if you have dirty data
- Bus write: update/invalidate your copy of data



### **Invalidating Snooping Protocols**

Cache gets **exclusive access** to a block when it is to be written

- Broadcasts an invalidate message on the bus
- Subsequent read is another cache miss
  - Owning cache supplies updated value

| Time<br>Step | CPU activity        | Bus activity     | CPU A's cache | CPU B's cache | Memory |
|--------------|---------------------|------------------|---------------|---------------|--------|
| 0            |                     |                  |               |               | 0      |
| 1            | CPU A reads X       | Cache miss for X | 0             |               | 0      |
| 2            | CPU B reads X       | Cache miss for X | 0             | 0             | 0      |
| 3            | CPU A writes 1 to X | Invalidate for X | 1             |               | 0      |
| 4            | CPU B read X        | Cache miss for X | 1             | 1             |        |

### **Invalidating Snooping Protocols**

Cache gets **exclusive access** to a block when it is to be written

- Broadcasts an invalidate message on the bus
- Subsequent read is another cache miss
  - Owning cache supplies updated value

| Time<br>Step | CPU activity        | Bus activity     | CPU A's cache | CPU B's cache | Memory |
|--------------|---------------------|------------------|---------------|---------------|--------|
| 0            |                     |                  |               |               | 0      |
| 1            | CPU A reads X       | Cache miss for X | 0             |               | 0      |
| 2            | CPU B reads X       | Cache miss for X | 0             | 0             | 0      |
| 3            | CPU A writes 1 to X | Invalidate for X | 1             |               | 0      |
| 4            | CPU B read X        | Cache miss for X | 1             | 1             | 1      |

### Writing

Write-back policies for bandwidth Write-invalidate coherence policy

- First invalidate all other copies of data
- Then write it in cache line
- Anybody else can read it

Works with one writer, multiple readers

In reality: many coherence protocols

- Snooping doesn't scale
- Directory-based protocols
  - Caches and memory record sharing status of blocks in a directory

# Summary of cache coherence

Informally, Cache Coherency requires that reads return most recently written value

Cache coherence hard problem

Snooping protocols are one approach

# **Next Goal: Synchronization**

Is cache coherency sufficient?

i.e. Is cache coherency (what values are read) sufficient to maintain consistency (when a written value will be returned to a read)

Need both coherency and consistency

# **Synchronization**

#### Two processors sharing an area of memory

- P1 writes, then P2 reads
- Data race if P1 and P2 don't synchronize
  - Result depends of order of accesses

#### Hardware support required

- Atomic read/write memory operation
- No other access to the location allowed between the read and write

#### Could be a single instruction

- E.g., atomic swap of register ← memory (e.g. ATS, BTS;
   x86)
- Or an atomic pair of instructions (e.g. LL and SC; MIPS)

# Synchronization in MIPS

- Load linked: LL rt, offset(rs)
- Store conditional: SC rt, offset(rs)
  - Succeeds if location not changed since the LL
    - Returns 1 in rt
  - Fails if location is changed
    - Returns 0 in rt

Example: atomic swap (to test/set lock variable)

```
try: MOVE $t0,$s4 ;copy exchange value LL $t1,0($s1);load linked SC $t0,0($s1);store conditional BEQZ $t0,try ;branch store fails MOVE $s4,$t1 ;put load value in $s4
```

Any time a processor intervenes and modifies the value in memory between the LL and SC instruction, SC returns 0 in \$t0, causing the code to try again