Multicore and Parallelism
and Synchronization |

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 4.10, 1.7, 1.8, 5.10, 6.4, 2.11




Administrivia

Next few weeks

* Week 12 (Apr 22): Lab4 release and Proj3 due Fri

— Note Lab 4 is now
* Week 13 (Apr 29): Proj4 release, , Prelim?2

* Week 14 (May 6): Proj3 tournament Mon, Proj4 design
doc due

Final Project for class
* Week 15 (May 13): Proj4 due Wed




Dynamic Multiple Issue

Instruction fetch
and decode unit

Y

Y

Reservation
station

Reservation
station

Integer

Y

\

In-order issue

Reservation
station

Reservation
station

Floating
point

Load-
store

Y

Commit
unit

Out-of-order execute

In-order commit




Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...

lw  pto,| 0($s1) # load A

addi $to,/ $to, +1 increment A
sw  $t2, 0($s1) store A

lw  /$t1,\0($s2) load B

addi// $t1, /$t1, +1 increment B
sw || $tl,/ 0($s2) store B

ALU/branch slot Load/store slot cycle
nop lw  $to, 0(%$sl1) 1
nop op

addi $to, $to, +1 nop

nop SW t0, 0(%$s1)
nop |lw $t1, 0(%$s2)

nop op
addi $t1, $t1, +1 no

nop sw  $tl, 0(%$s2)




Does Multiple Issue Work?

Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?
* Programs dependencies
* Hard to detect dependencies = be conservative
— e.g. Pointer Aliasing: A[0] += 1; B[0O] *= 2;
Hard to expose parallelism

— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full




Today

Many ways to improve performance
Multicore
Performance in multicore
Synchronization

Next 2 lectures: synchronization and GPUs




How to improve performance?

We have looked at
* Pipelining

 To speed up:
* Deeper pipelining
* Make the clock run faster
* Parallelism

Not a luxury, a necessity




Why Multicore?

Moore’s law
* Alaw about transistors
* Smaller means more transistors per die

* And smaller means faster too

But: need to worry about power too...




Power Wall

Power =(capacitance * voltage? * frequency

approx. capacitance * voitage’

Reducing voltage helps (a lot)

Better cooling helps

The power wall
* We can’t reduce voltage further - leakage

e We can’t remove more heat




Power Limits

i I E E EE EEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEERN
3

L
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERmR

™~
P
£
o
2
—_—
@
=

Peintium lll ® processor
entiym Il ® processor

Pentium Pro
Pentium ® proce ssor

I E I EEEEEEEEERN

pProce SSor

1.50  1p D.7u O.5p D.35p 0.251 0.18u 0.13u 0.1p 0.07u




Why Multicore?

Performance 1.2x Single-Core
Power 1.7x Overclocked +20%

Performance 1.0x
Single-Core
Power 1 Ox 8

Performance 1.6X pual-Core
Power 1.02x Underclocked -20%

Undervolted -20%




Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores

HT PHY, link 1 |Slow I/O

128-)f FPU

ad/{
2MB tore [N

hared
fsare Executio L2

Cache [l|Fetch/ %

Decode/ tr
e

%

HT PHY, link 2

<I7T TOO

HT PHY, link 3

HT PHY, link 4




Inside the Processor
Intel Nehalem Hex-Core

| iMefmiory Cofrtroller 1 1

L1 DataCache L2 Cache
s _ & Interrupt
SExecution , Servieing

r»/emory Ordenng
- & Execution Paging. -

| o : Brancﬁ Prediction
* ~Instiction _ ‘
| Réordermg S ,

S;S&??;,i;’;%t ~Microcode __Instruction Fetch

&1 Cache ,  ==|E

1IEDDDDEDDiD*ﬂﬁﬁD]iDﬂijjiiiiff5?




Hardware multithreading

Hardware multithreading

* |ncrease utilization with low overhead

Switch between hardware threads for stalls




What is a thread?

Process includes multiple threads, code, data
and OS state

code code data files
e— = e — e

registers gisters ||| registers ||| registers
el A

- —

-» stack stack stack

thread —»

single-threaded multithreaded




Hardware multithreading

Fine grained vs. Coarse grained hardware
multithreading

Simultaneous multithreading (SMT)

Hyperthreads (Intel simultaneous
multithreading)

* Need to hide latency




Hardware multithreading

Fine grained vs. Coarse grained hardware
multithreading

Fine grained multithreading
Switch on each cycle
Pros: Can hide very short stalls
Cons: Slows down every thread

Coarse grained multithreading
Switch only on quite long stalls
Pros: removes need for very fast switches
Cons: flush pipeline, short stalls not handled




Simultaneous multithreading

SMT

Leverages multi-issue pipeline with dynamic
instruction scheduling and ILP
Exploits functional unit parallelism better than single
threads
Always running multiple instructions from multiple
threads

* No cost of context switching

* [} Uses dynamic scheduling and register renaming
through reservation stations

Can use all functional units very efficiently




Issue slots ——»
Thread A Thread B

Thread C

Thread D

Issue slots -
Coarse MT
==
[

P
T E




Hyperthreading

Multi-Core vs. Multi-Issue vs. HT

Programs: 1 N
Num. Pipelines: 1 1
Pipeline Width: N N

Hyperthreads
 HT = Multilssue + extra PCs and registers — dependency logic
e HT = MultiCore — redundant functional units + hazard avoidance

Hyperthreads (Intel)
* [llusion of multiple cores on a single core
* Easy to keep HT pipelines full + share functional units




Example: All of the above

=y )
pun JOHB
>

=)

H-b

(@ |
“

g @
ety
I / |

(.

I

c? (=D

JOHEB JOHEB

~

=

- Memory

Intel” Scalable Memory Buffer

8 multiprocessors
4 core per multiprocessor
2 HT per core

Dynamic multi-issue: 4 issue
Pipeline depth: 16

Note: each processor may
have multiple processing
cores, so this is an example
of a multiprocessor multicore
hyperthreaded system




Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
* Partitioning work, balancing load
* Coordination & synchronization
 Communication overhead

* How do you write parallel programs?
— ... without knowing exact underlying architecture?




Work Partitioning

Partition work so all cores have something to do




Load Balancing

Need to partition so all cores are actually working




Amdahl’s Law

If tasks have a serial part and a parallel part...

Example:
step 1: divide input data into n pieces
step 2: do work on each piece
step 3: combine all results

Recall: Amdahl’s Law

As number of cores increases ...

* time to execute parallel part? goes to zero
* time to execute serial part? Remains the same

e Serial part eventually dominates




Amdahl’s Law




Pitfall: Amdahl’s Law

Execution time after improvement =
affected execution time

amount of improvement
+ execution time unaffected

T

= Taffected improvement factor + T

improved unaffected




Pitfall: Amdahl’s Law

Improving an aspect of a computer and expecting a
proportional improvement in overall performance

T

= Taffected /improvement factor + T

improved unaffected

Example: multiply accounts for(80s)out of{100s

* How much improvement do we need in the multipiy
performance to get 5x overall improvement?

20 ='\80/n + 20 - Can’tbe done!




Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix sum
* Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) x t_,
10 processors
* Time=100/10 x t 4y + 10 x t,44=20 x t
° Speedup = 110/20 =55
100 processors
* Time = 100/100 X t g4 + 10 X t,4q = 11 X t,4q
* Speedup =110/11 =10

Assumes load can be balanced across processors




Scaling Example
What if matrix size is 100 x 1007

Single processor: Time = (10 + 10000) x t_,,

10 processors
* Time=10xt_,, + 10000/10 x t,,, = 1010 x t_,
e Speedup =10010/1010=9.9

100 processors
* Time=10xt,_,, +10000/100 x t_,, =110 x t_,,
e Speedup =10010/110=91

Assuming load balanced




Scaling

Strong scaling vs. weak scaling

Strong scaling: scales with same problem size

Weak scaling: scales with increased problem size




Parallelism is a necessity

Necessity, not luxury
Power wall

Not easy to get performance out of

Many solutions
Pipelining

Multi-issue
Hyperthreading
Multicore




Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
/ e Partitioning work

career...

[ * Coordination & synchronization ]

« Communications overhead HV!J’

~ ~——

* Balancing load over cores

* How do you write parallel programs?
\ — ... without knowing exact underlying architectur?




Synchronization

P&H Chapter 2.11 and 5.10




Parallelism and Synchronization

How do | take advantage of parallelism?
How do | writg7{correct)/parallel programs?

What primitives do | need to implement correct
parallel programs?




Topics

Understand Cache Coherency

Synchronizing parallel programs
* Atomic Instructions
* HW support for synchronization

How to write parallel programs
 Threads and processes
* C(Critical sections, race conditions, and mutexes




Parallelism and Synchronization

Cache Coherency Problem: What happens when
two or more processors cache shared data?




Parallelism and Synchronization

Cache Coherency Problem: What happens when
two or more processors cache shared data?

i.e. the view of memory held by two different
processors is through their individual caches

As a result, processors can see different
(incoherent) values to the same memory location




Parallelism and Synchronization

Each processor core has its own L1 cache

compute
jump/branch

compute
jump/branch jump/branch
targets

register
file

register
file

register
file

register
file

dr
Ao control control owt control
memory

control

memory

detect

detect
hazard hazard
Instruction Instruction i Instruction Instruction
Fetch Memory Fetch Fetch Fetch Execute
EX/MEM MEM/WB EX/MEM MEM/WB EX/MEM MEM/WB EX/MEM MEM/WB




Parallelism and Synchronization

Each processor core has its own L1 cache

compute
jump/branch

compute

compute
jump/branch

compute
jump/branch
register

register register
file file

register
file file

addr
dy d

P control

P control

= =
control S
memory
detect detect
hazard

hazard
Instruction

= =
control
Instruction
Fetch

Instruction ‘ = [wri
Fetch Fetch
= - =
IF/ID IF/ID IF/ID ID/EX |X/MEM MEM/WB

Interconnect

Instruction
Fetch

IF/ID EX/MEM MEM/WB

/0




Shared Memory Multiprocessors

Shared Memory Multiprocessor ((SMP)
* Typical (today): 2 — 8 cores each

 HW provides single physical address space for all
pProcessors

* Assume uniform memory access (UMA) (ignore NUMA)

Core2
Cache

{

Interconnect

{

/0




Shared Memory Multiprocessors
Shared Memory Multiprocessor (SMP)

* Typical (today): 2 — 8 cores each

 HW provides single physical address space for all
pProcessors

* Assume uniform memory access (ignhore NUMA)

Interconnect

{

/0




Cache Coherency Problem

Thread A (on Core0) Thread B (on Corel)
for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
X=x+1; X=x+1;

J J

What will the value of x be after both loops finish?

Start: x=0

CoreO Corel
Cache Cache

{ {

Interconnect

{ {

/0




iClicker

Thread A (on Core0) Thread B (on Corel)
for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
X=xX+1; X=x+1;

J J




Cache Coherency Problem

Thread A (on Core0) Thread B (on Corel)

for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
LW St0, addr(x) LW St1, addr(x)
ADDIU St0, St0, 1 ADDIU St1, St1, 1

SW S$t0, addr(x) SW St1, addr(x)




iClicker

Thread A (on Core0) Thread B (on Corel)
for(inti=0;i<5;i++) { for(intj=0;j<5; j++) {
X=xX+1; X=x+1;

J J

What can the value of x be after both loops finish?

a) 6

b) 8

c) 10

d) All of the above

e) None of the above




Cache Coherence Problem

Suppose two CPU cores share a physical address space

* Write-through caches

Time | Event CPU A’s CPU B’s Memory
step cache cache

CPU Areads X
CPU B reads X
CPU A writes 1 to X

CoreO Corel

Cache Cache

{ {

Interconnect

{

/0




Two issues

Coherence
What values can be returned by a read

Consistency
When a written value will be returned by a read




Coherence Defined

Informal: Reads return most recently written value

Formal: For concurrent processes P, and P,

* P writes X before P reads X (with no intervening writes)
=> read returns written value

* P, writes X before P, reads X
= read returns written value

* P, writes X and P, writes X
=> all processors see writes in the same order

— all see the same final value for X
— Aka write serialization




Coherence Defined
Formal: For concurrent processes P, and P,

* P writes X before P reads X (with no intervening writes)
=> read returns written value

* P, writes X before P, reads X
=> read returns written value

* P, writes X and P, writes X
=> all processors see writes in the same order

— all see the same final value for X
— Aka write serialization




Cache Coherence Protocols

Operations performed by caches in multiprocessors
to ensure coherence and support shared memory
* Migration of data to local caches
— Reduces bandwidth for shared memory (performance)

* Replication of read-shared data
— Reduces contention for access (performance)

Snooping protocols
e Each cache monitors bus reads/writes (correctness)




Shooping

Snooping for Hardware Cache Coherence
e All caches monitor bus and all other caches

Write invalidate protocol

* Bus read: respond if you have dirty data

* Bus write: update/invalidate your copy of data

Interconnect

{

/0




Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be
written

* Broadcasts an invalidate message on the bus

e Subsequent read is another cache miss
— Owning cache supplies updated value

CPU activity Bus activity CPU A’s
cache

CPU Areads X Cache miss for X
CPU B reads X Cache miss for X
CPU A writes 1 to X Invalidate for X

0

0 0

I
CPU B read X Cache miss for X @ @




Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be
written

* Broadcasts an invalidate message on the bus

e Subsequent read is another cache miss
— Owning cache supplies updated value

CPU activity Bus activity CPU A’s
cache

CPU Areads X Cache miss for X
CPU B reads X Cache miss for X
CPU A writes 1 to X Invalidate for X

0

0 0

I
CPU B read X Cache miss for X @ @




Writing

Write-back policies for bandwidth

Write-invalidate coherence policy

* First invalidate all other copies of data
* Then write it in cache line

* Anybody else can read it
Works with one writer, multiple readers

In reality: many coherence protocols

* Snooping doesn’t scale

* Directory-based protocols
— Caches and memory record sharing status of blocks in a directory




Summary of cache coherence

Informally, Cache Coherency requires that reads
return most recently written value

Cache coherence hard problem

Snooping protocols are one approach




