
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

P & H Chapter 5.7 (up to TLBs)

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap)

.data

.text

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard Stack, Data, Code

Stored in Memory

$0 (zero)
$1 ($at)

$29 ($sp)
$31 ($ra)

Code Stored in Memory
(also, data and stack)

$$

$$

How do we execute more than one program at a
time?

How do we execute more than one program at a
time?

A: Abstraction – Virtual Memory

ÅMemory that appears to exist as main memory
(although most of it is supported by data held in
secondary storage, transfer between the two being
made automatically as required—i.e. ”paging”)

ÅAbstraction that supports multi-tasking---the ability
to run more than one process at a time

What is Virtual Memory?

How does Virtual memory Work?
Å Address Translation
Å Pages, page tables, and memory mgmt unit

Å Paging

Å Role of Operating System
Å Context switches, working set, shared memory

Å Performance
Å How slow is it

Å Making virtual memory fast

Å Translation lookaside buffer (TLB)

Å Virtual Memory Meets Caching

How to Run multiple processes?

Time-multiplex a single CPU core (multi-tasking)

ÅWeb browser, skype, office, … all must co-exist

Many cores per processor (multi-core)
or many processors (multi-processor)

ÅMultiple programs run simultaneously

LB $1 «M[1]
LB $2 «M[5]
LB $3 «M[1]
LB $3 «M[4]
LB $2 «M[0]
LB $2 «M[12]
LB $2 «M[5]
LB $2 «M[12]
LB $2 «M[5]
LB $2 «M[12]
LB $2 «M[5]

Processor Memory

Misses:

Hits:

Cache

tag data

2

100

110

150

1401

0

0 Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

Memory: big & slow vs Caches: small & fast

$0
$1
$2
$3

CPU address/data bus...

… routed through caches

… to main memory

ÅSimple, fast, but…

Q: What happens for LW/SW
to an invalid location?

Å0x000000000 (NULL)

Åuninitialized pointer

.

CPU

Text

Data

Stack

Heap

Memory
0x000…0

0x7ff…f

0xfff…f

Memory

$$

Q: What happens when another program is
executed concurrently on another processor?

.

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

$$
$$

Q: Can we relocate second program?

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

Q: Can we relocate second program?

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

All problems in computer science can be solved by
another level of indirection.

ςDavid Wheeler

ςor, Butler Lampson

ςor, Leslie Lamport

ςor, Steve Bellovin

All problems in computer science can be solved by
another level of indirection.

ςDavid Wheeler

ςor, Butler Lampson

ςor, Leslie Lamport

ςor, Steve Bellovin
Solution: Need a MAP
To map a Virtual Address (generated by CPU)
to a Physical Address (in memory)

How does Virtual Memory work?

i.e. How do we create that “map” that maps a
virtual address generated by the CPU to a physical
address used by main memory?

Virtual Memory: A Solution for All Problems

ÅProgram/CPU can access any address from 0…2N

(e.g. N=32)

Each process has its own virtual address space

ÅA process is a program being executed

ÅProgrammer can code as if they own all of memory

On-the-fly at runtime, for each memory access

Åall access is indirectthrough a virtual address

Åtranslate fake virtual address to a real physical address

Åredirect load/store to the physical address

map

Programs load/store to virtual addresses

Actual memory uses physical addresses

Memory Management Unit (MMU)

ÅResponsible for translating on the fly

ÅEssentially, just a big array of integers:
paddr = PageTable[vaddr];

CPU

MMU

A
B
C

X

Y

Z

X
Y
Z

C
B

A

CPU

MMU

0x1000 0x1000

Virtual Address
Space

Physical Address Space

Virtual Address
Space

Advantages

Easy relocation

ÅLoader puts code anywhere in physical memory

ÅCreates virtual mappings to give illusion of correct
layout

Higher memory utilization

ÅProvide illusion of contiguous memory

ÅUse all physical memory, even physical address 0x0

Easy sharing

ÅDifferent mappings for different programs / cores

And more to come…

All problems in computer science can be solved by
another level of indirection.

Need a map to translate a “fake” virtual address
(generated by CPU) to a “real” physical Address (in
memory)

Virtual memory is implemented via a “Map”, a
PageTage, that maps a vaddr (a virtual address) to
a paddr (physical address):

paddr = PageTable[vaddr]

How do we implement that translation from a virtual
address (vaddr) to a physical address (paddr)?

paddr = PageTable[vaddr]

i.e. How do we implement the PageTable??

Address Translation

Pages, Page Tables, and

the Memory Management Unit (MMU)

How large should a PageTable be for a MMU?

paddr = PageTable[vaddr];

Granularity?

ÅPer word…

ÅPer block…

ÅVariable..…

Typical:

Å4KB – 16KB pages

Å4MB – 256MB jumbo pages

Attempt #1: For any access to virtual address:

ÅCalculate virtual page number and page offset

ÅLookup physical page number at PageTable[vpn]

ÅCalculate physical address as ppn:offset

vaddrPage OffsetVirtual page number

Page offsetPhysical page number

Lookup in PageTable

paddr

31 12 11 0

12 11 0

CPU
generated

Main
Memory

e.g. Page size
4 kB = 212

All problems in computer science can be solved by another
level of indirection.

Need a map to translate a “fake” virtual address (generated
by CPU) to a “real” physical Address (in memory)

Virtual memory is implemented via a “Map”, a PageTage,
that maps a vaddr (a virtual address) to a paddr (physical
address):

paddr = PageTable[vaddr]

A page is constant size block of virtual memory. Often, the
page size will be around 4kB to reduce the number of entries
in a PageTable.

Example

How to translate a vaddr (virtual address) generated
by the CPU to a paddr (physical address) used by
main memory using the PageTable managed by the
memory management unit (MMU).

Example

How to translate a vaddr (virtual address) generated
by the CPU to a paddr (physical address) used by
main memory using the PageTable managed by the
memory management unit (MMU).

Q: Where is the PageTable stored??

Q: Where to store page tables?

CPU MMUData

Read Mem[0x4123B538]

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

0x10044000

PageOffset
VPN: virtual page number

PTBR

vpn pgoff

Physical Page
Number
0x10045

0xC20A3
0x4123B
0x10044

vaddr

PTBR
0x00000000

0x90000000

0x10045000

0xC20A3000

0x10044000

0x4123B000

Cool Trick #1: Don’t map all pages
Need valid bit for each
page table entry
Q: Why?

.

V
Physical Page

Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0x10044
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

0x10044000

Cool Trick #2: Page permissions!
Keep R, W, X permission bits for
each page table entry
Q: Why?

.

V R W X
Physical Page

Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0x10044
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

0x10044000

Cool Trick #3: Aliasing
Map the same physical page
at several virtual addresses
Q: Why?

.

V R W X
Physical Page

Number
0
1 0xC20A3
0
0
1 0xC20A3
1 0x4123B
1 0x10044
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

0x10044000

Overhead for VM Attempt #1 (example)

Virtual address space (for each process):

Åtotal memory: 232 bytes = 4GB

Åpage size: 212 bytes = 4KB

Åentries in PageTable?

Åsize of PageTable?

Physical address space:

Åtotal memory: 229 bytes = 512MB

Åoverhead for 10 processes?

All problems in computer science can be solved by another level
of indirection.
Need a map to translate a “fake” virtual address (generated by
CPU) to a “real” physical Address (in memory)

Virtual memory is implemented via a “Map”, a PageTage, that
maps a vaddr (a virtual address) to a paddr (physical address):
paddr = PageTable[vaddr]

A page is constant size block of virtual memory. Often, the page
size will be around 4kB to reduce the number of entries in a
PageTable.

We can use the PageTable to set Read/Write/Execute permission
on a per page basis. Can allocate memory on a per page basis.
Need a valid bit, as well as Read/Write/Execute and other bits.
But, overhead due to PageTable is significant.

How do we reduce the size (overhead) of the
PageTable?

How do we reduce the size (overhead) of the
PageTable?

A: Another level of indirection!!

Assume most of PageTable is empty

How to translate addresses?

10 bits

PTBR

10 bits 10 bits vaddr

PDEntry

Page Directory

Page Table

PTEntry
Page

Word

2

Multi-level PageTable

* x86 does exactly this

Assume most of PageTable is empty

How to translate addresses? Multi-level PageTable

Q: Benefits?

Q: Drawbacks

All problems in computer science can be solved by another level of
indirection.
Need a map to translate a “fake” virtual address (generated by CPU) to a
“real” physical Address (in memory)

Virtual memory is implemented via a “Map”, a PageTage, that maps a
vaddr (a virtual address) to a paddr (physical address):
paddr = PageTable[vaddr]

A page is constant size block of virtual memory. Often, the page size will
be around 4kB to reduce the number of entries in a PageTable.

We can use the PageTable to set Read/Write/Execute permission on a per
page basis. Can allocate memory on a per page basis. Need a valid bit, as
well as Read/Write/Execute and other bits.
But, overhead due to PageTable is significant.

Another level of indirection, two levels of PageTables and significantly
reduce the overhead due to PageTables.

Can we run process larger than physical memory?

Paging

Can we run process larger than physical memory?

ÅThe “virtual” in “virtual memory”

View memory as a “cache” for secondary storage

ÅSwap memory pages out to disk when not in use

ÅPage them back in when needed

Assumes Temporal/Spatial Locality

ÅPages used recently most likely to be used again soon

Cool Trick #4: Paging/Swapping

Need more bits:

Dirty, RecentlyUsed, …

V R W X D
Physical Page

Number
0 invalid
1 0 0x10045
0 invalid
0 invalid
0 0 disk sector 200
0 0 disk sector 25
1 1 0x00000
0 invalid

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

25

200

Virtual Memory
Å Address Translation
Å Pages, page tables, and memory mgmt unit

Å Paging

Next time
Å Role of Operating System
Å Context switches, working set, shared memory

Å Performance
Å How slow is it

Å Making virtual memory fast

Å Translation lookaside buffer (TLB)

Å Virtual Memory Meets Caching

Lab3 is out due next Wednesday

Next five weeks

ÅWeek 10 (Apr 8): Lab3 released

ÅWeek 11 (Apr 15): Proj3 release, Lab3 due Wed, HW2
due Fri

ÅWeek 12 (Apr 22): Lab4 release and Proj3 due Fri

ÅWeek 13 (Apr 29): Proj4 release, Lab4 due Tue, Prelim2

ÅWeek 14 (May 6): Proj3 tournament, Proj4 design doc
due

Final Project for class

ÅWeek 15 (May 13): Proj4 due

