Caches 2

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 5.1-5.4, 5.8, 5.15

Memory Hierarchy

Memory closer to processor
e small & fast

. L1 Cache
e stores active data SRAM-on-chip

Memory farther from processor

* big & slow
. : Ve d L2/L3 Cache
stores Inactive data SRAM

Memory Hierarchy

Memory closer to processor is fast but smal

* usually stores subset of memory farther
— “strictly inclusive”

* Transfer whole blocks
(cache lines):

4kb: disk <> RAM
256b: RAM &~ L2
64b: L2 & L1

Cache Questions

 What structure to use?
* Where to place a block (book)?
 How to find a block (book)?

* When miss, which block to replace?

* What happens on write?

Today

Cache organization
* Direct Mapped
* Fully Associative
* N-way set associative

Cache Tradeoffs

Next time: cache writing

Cache Lookups (Read)

Processor tries to access Mem|x]

Check: is block containing Mem|[x] in the cache?

* Yes: cache hit
— return requested data from cache line

* No: cache miss
— read block from memory (or lower level cache)
— (evict an existing cache line to make room)
— place new block in cache
— return requested data
— and stall the pipeline while all of this happens

Questions

How to organize cache

What are tradeoffs in performance and cost?

Three common designs

A given data block can be placed...
* ...in exactly one cache line = Direct Mapped
 ...inany cache line = Fully Associative

— This is most like my desk with books

e ...in a small set of cache lines = Set Associative

Direct Mapped Cache

* Each block number maps to a single
cache line index

* Where?

address mod #blocks in cache

0x000000
0x000004
0x000008
0x00000c
0x000010
0x000014
0x000018
0x00001c
0x000020
0x000024
0x000028

0x00002c

0x000030
0x000034
0x000038
0x00003c
0x000040

Direct Mapped Cache

index = address mod 2

hndex
|

line O
line 1

K

2 cachelines
1-byte per cacheline

Memory (bytes)

0)(0[0
0x01
0x02
O0x03
0x04

Cache size = 2 bytes

Direct Mapped Cache

index = address mod 2

hndex
|

line O
line 1

K

2 cachelines
1-byte per cacheline

Memory (bytes)

0)(0[0
0x01
0x02
O0x03
0x04

Cache size = 2 bytes

Direct Mapped Cache

index = address mod 4

hndex
p)

Cache

line O
line 1
line 2
line 3

K

4 cachelines
1-byte per cacheline

Memory (bytes)

0)(0[0
0x01
0x02

x03
0x04
0x05

Cache size = 4 bytes

Direct Mapped Cache

index = address mod 4
offset = which byte in each line

32-addr | indexloffset

28-bits 2-bits 2-bits
Cache

line 0| ABCD
line 1
line 2
line 3

\

4 cachelines
1- per cacheline

Memory (word)

0)(0]0)
0x04
(00}
0) (0o
0x010
0x014

ABCD

Cache size = 16 bytes

Direct Mapped Cache: 2

index = address mod 4

offset = which byte in each line

offset 3 bits: A,B,C,D, E,F G, H

32-addr

| indexloffset

27-bits

L line O

line 1
line 2
line 3

Cache

2-bits

ABCD

EFGH

lJKL

MNOP

QRST

UVWX

YZ12

3456

4 cachelines
2-words (8 bytes) per cacheline

Iineo{(5xoooooo
0x000004
line 1 [0x000008
0x00000c

, [0x000010
0x000014
line 3 [0x000018
0x00001c¢
Iine(l{)xoooozo
0x000024

line 1 [0x000028
0x00002¢

line 2 [0x000030
0x000034
line 3 TOx000038
0x00003c

0x000040
0x000044

line

Memory

ABCD

EFGH

lJKL

MNOP

QRST

UVWX

YZ12

3456

abcd

efgh

Direct Mapped Cache: 2 Memory

0x000000 ABCD
0x000004 EFGH
line 1 [0x000008 lJKL

0x00000c MNOP

line 2 | 0000010 QRST

0x00, 0x20, 0x40? 0x000014 UVWX
line 3 |{0x000018 YZ12

0x00001c 3456
0x000020 abcd

line
tag = which memory element is it?

32-addr tag | indexloffset
27-bits 2-bits 3-bits 0x000024 efgh

L Cache line 1 [0x000028
line 0| Tag & valid bits ABCD EFGH 0x00002c¢

line 1 KL MNOP |line 2 [0x000030
line 2 QRST UVWX 0x000034

line

line 3 T0x000038
0x00003c
0x000040
0x000044

line 3 YZ12 3456

4 cachelines
2-words (8 bytes) per cacheline

Direct Mapped Cache

Every address maps to one location

Pros: Very simple hardware

Cons: many different addresses land on same
location and may compete with each other

Direct Mapped Cache (Hardware)

3 bits

Tag| Index |Offset

\Y 7Tag

©

0...001000 (ﬁ T T
tag offset \Q/ord/byte selec}/<

index]
hit? data T 32/8 bits

Example: Direct Mapped Cache

Using byte addresses in this example. Addr Bus =5 bits

Processor Cache Memory

4 cache lines
2 byte block

100
110

tag data

0
|
2
3
4
5
()
7
8
9

(WY
(=)

(WY
[

(WY
N

(WY
W

(WY
S

(WY
U

Example: Direct Mapped Cache

Using byte addresses in this example. Addr Bus =5 bits

Processor Cache Memory

4 cache lines

2 byte block

2 bit tag field

2 bit index field
1 bit block offset

v tag data
0

100
110

0
|
2
3
4
5
()
7
8
9

(WY
(=)

(WY
[

(WY
N

(WY
W

(WY
S

(WY
U

Direct Mapped Example: 61" Access

Pathological example

Processor

LB $1<— M[1
LB S2<— M[5
LB $3<—M[1 00
LB $3<— M[4

LB S2<—M[O
‘LB$2<—M[1Z IO_I
LB $2<— M[5

1] 00

OO NOOULDE WNERERO

(WY
(=)

(WY
[

S0

> Misses: 2
) isses:

(WY
N

(WY
W

(WY
S

S3 Hits: 3

(WY
U

6th Access

Processor Cache

Addr: 0110

LB S1<—M[1
LB S2<— M[5
LB §3<—M[1 1| 00 100
LB S3<— M[4
LB S2<—M[O 110
LB $2 < M[12
LB $2<— M[5

y tas data

OO NOOULDE WNERERO

(WY
(=)

(WY
[

S0

s1 :
$2 Misses: 3

(WY
N

==
S W

S3 Hits: 3

(WY
U

7t Access

Processor

IBS$1<M[1]
LB $2< M[5]
LB $3<—M[1]
LB $3<— M[4]
]
]
]

LB $2 «— M|
LB $2 < M[12
) B $2< M[5

OO NOOULDE WNERERO

(WY
(=)

(WY
[

S0

> Misses: 3
) isses:

(WY
N

==
S W

S3 Hits: 3

(WY
U

7t Access

Processor Cache

Addr: 0010

LB $1< M[1
LB $2 < M[5
LB $3 < M[1
LB $3<— M[4
LB $2 < M[0
LB $2 < M[12
) B $2<— M[5

v tag data

00 100
110

S2xxx=<

OO NOOULDE WNERERO

(WY
(=)

(WY
[

S0
s1

¢2 - Misses: 4
S3 Hits: 3

(WY
N

[
vi b W

8th and 9th Access

Processor

LB $1 < M[

LB $2 < M[

LB $3 < M[

LB $3 < M[

LB $2< M[0]H

LB $2< M[12] M

LB $2<M[5]M

LB $2<— M[12] M
) B2 M[5 | M

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 4+2

==
S W

Hits: 3

(WY
U

10th and 11th, 12th and 13th Access

Processor

LB $S1<—M[1

LB $2<— M[5

LB $3<—M[1

LB $3<— M[4

LB S2<— M[O

LB $2<—M[12 | M

LB $2<— M[5

LB $2 — M[12

LB $2<—M[5 1M

LB S2<— M[12 | M

LB $S2<—M[5 1M

LB $2<—M[12 | M
) 1B $2<M[5 | M Misses: 4+2+2+2

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

==
S W

Hits: 3

(WY
U

Problem

Working set is not too big for cache

Yet, we are not getting any hits?!

Misses

Three types of misses
* Cold (aka Compulsory)

— The line is being referenced for the first time
* Capacity

— The line was evicted because the cache was not large
enough

e Conflict

— The line was evicted because of another access whose
index conflicted

Misses

Q: How to avoid...

Cold Misses
 Unavoidable? The data was never in the cache...

* Prefetching!
Capacity Misses
* Buy more cache

Conflict Misses

* Use a more flexible cache design

Cache Organization

How to avoid Conflict Misses

Three common designs

* Direct mapped: Block can only be in one line in the
cache

* Fully associative: Block can be anywhere in the
cache

* Set-associative: Block can be in a few (2 to 8)
places in the cache

Fully Associative Cache

Block can be anywhere in the cache
* Most like our desk with library books

Have to search in all entries to check for match

* More expensive to implement in hardware

But as long as there is capacity, can store in
cache

e So least misses

Fully Associative Cache (Reading)

® Tag Offset
V Tag Block

No index

711

5

A line select /

\ word/byte select A4—
-T 32 or 8 bits
data

Fully Associative Cache (Reading)

Tag Offset
V Tag ock

m bit offset , 2" blocks (cache lines)

Q: How big is cache (data only)?

Cache of size 2" blocks
Block size of 2™ bytes

Cache Size: number-of-blocks x block size
= 2" x 2™ bytes
= 2™M pytes

Fully Associative Cache (Reading)

Tag Offset
V Tag ock

m bit offset , 2" blocks (cache lines)

Q: How much SRAM needed (data + overhead)?
Cache of size 2" blocks

Block size of 2™ bytes

Tag field: 32 —m

Valid bit: 1

SRAM size: 2" x (block size + tag size + valid bit size)
= 2"x (2™ bytes x 8 bits-per-byte + (32-m) + 1)

Example: Simple Fully Associative Cache
Using byte addresses in this example! Addr Bus =5 bits

Processor Cache Memory
4 cache lines

2 byte block

100
110

4 bit tag field

1 bit block offset
y tas data

Vv

Vv

0
|
2
3
4
5
()
7
8
9

(WY
(=)

(WY
[

(WY
N

(WY
W

(WY
S

(WY
U

15t Access

Processor

0
|
2
3
4
5
()
7
8
9

S N T S S T
ubH WNERO

Eviction

Which cache line should be evicted from the
cache to make room for a new line?
* Direct-mapped
— no choice, must evict line selected by index
* Associative caches

— random: select one of the lines at random
— round-robin: similar to random

— FIFO: replace oldest line

— LRU: replace line that has not been used in the longest
time

15t Access

Processor

Addr: 0000 6/0

o
= LB 51« M| tqZ data

LB $2 <« M|
LB 23 ~— M[0000] 100
LB $3 <— M|

LB $2 — M| 2

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

(WY
W

Misses: 1

(WY
S

Hits: 0

(WY
U

2Md Access

Processor

LB $1 < M[
) LB $2 «— M|
LB $3 < M[
LB $3 < M[
LB $2 < M[

tag

data

0000

100

110

Misses:

Hits:

1
0

OO NOOULDE WNERERO

S N T S S T
ubH WNERO

2Md Access

Processor Cache

Addr: 0010

%

LB $1 < M[
) LB $2 «— M|

LB $3 < M| 00go| 100
LB $3 < M[I 110

tag data

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 2

(WY
W

(WY
S

Hits: 0

(WY
U

3rd Access

Processor

tag data

0000 100
110

Misses: 2

Hits: 0

OO NOOULDE WNERERO

S N T S S T
ubH WNERO

3rd Access

Processor Cache

Addr: 0000 é
/A
ot

tag data

0000 100
110

0010

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 2

(WY
W

(WY
S

Hits: 1

(WY
U

4th Access

Processor

LB $1 « M|
LB $2 < M|
LB $3 «— M|

mm) LB $3 < M|
LB $2 < M|

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

(WY
W

(WY
S

(WY
U

4th Access

Processor

LB $1 « M|
LB $2 < M|
LB $3 «— M|

mm) LB $3 < M|
LB $2 < M|

S0
s1
$2
S3

Cache

Addr: 0010

tag/ data

oogo] 100

J 110

Misses: 2

Hits: 2

OO NOOULDE WNERERO

S N T S S T
ubH WNERO

5th Access

Processor

LB $1 « M[
LB $2 « M[
LB $3 < M[
LB $3 < M[
mm) LB S2 — M|

S0
s1
$2
S3

tag data

0000 100
110

o010/ SRR

150

Misses: 2

Hits: 2

OO NOOULDE WNERERO

S N T S S T
ubH WNERO

5th Access

Processor Cache

Addr: 0000

LB $1 « M[
LB $2 « M[
LB $3 < M[
LB $3 < M[
mm) LB S2 — M|

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 2

==
S W

Hits: 3

(WY
U

6th Access

Processor

LB $1 < M[
LB $2 < M[
LB 23 — M 0 100
LB $3 < M|

LB $2 «— M| 110
LB $2 « M[12
LB $2< M[5]

tag data

OO NOOULDE WNERERO

(WY
(=)

(WY
[

S0

s1 : 5
$2 Misses:

(WY
N

==
S W

S3 Hits: 3

(WY
U

6th Access

Processor Cache

Addr: 0110

IBS$1<M[1]M
LB $2<M[5 | M
LB §3<—M[1: 0000 100
LB $3< M[4]

LB $2<M[0]H 110
LB $2 < M[12 | M 0010
LB $2<M[5]

tag data

OO NOOULDE WNERERO

110110

s1 :
$2 Misses: 3

(WY
(=)

(WY
[

(WY
N

==
S W

S3 Hits: 3

(WY
U

7t Access

Processor

IBS1<—M[1]M
IBS$2<—M[5] M
IBS$3<M[1]H
IB $3<M[4]H
LB $2<M[O]H
LB $2<—M[12 | M
m) LB $2<—M[5]H

OO NOOULDE WNERERO

(WY
(=)

(WY
[

s1

¢2 - Misses: 3
S3 Hits: 3+1

(WY
N

[
vi b W

8th and 9th Access

Processor

LB $1 < M[

LB $2 < M[

LB $3 < M[

LB $3 < M[

LB $2< M[0]H

LB $2< M[12] M

LB $2< M[5]H

LB $2<— M[12]H
) B2 M[5]H

s1

é2 - Misses: 3
S3 Hits: 3+1+2

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

[
vi b W

10th and 11t Access

Processor

LB $1< M[1
LB $2< M[5
LB $3<— M[1
LB $3 < M[4
LB $2<— M[O
LB $2< M[12 | M
LB $2< M[5]H
LB $2 < M[12]H
LB $2< M[5]H

LB $2<— M[12]H
LB $2<M[5]H L

Misses: 3

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

==
S W

Hits: 3+1+2+2

(WY
U

Direct Mapped
+ Smaller

+ Less

+ Less

+ Faster

+ Less

+ Very

— Lots

— Low

— Common

Cache Tradeoffs

Tag Size
SRAM Overhead
Controller Logic

Speed
Price
Scalability
of conflict misses
Hit rate
Pathological Cases?

Fully Associative
Larger —

More —

More —
Slower —

More —

Not Very —

ero +

High +

?

Compromise

Set-associative cache

Like a direct-mapped cache

* |ndex into a location
* Fast

Like a fully-associative cache

e Can store multiple entries
— decreases conflicts

e Search in each element
n-way set assoc means n possible locations

2-Way Set Associative Cache (Reading)

Tag Index Offset

3-Way Set Associative Cache (Reading)

Tag Index Offset

Comparison: Direct Mapped

Processor

LB $1< M[1
LB $2< M[5
LB $3<— M[1
LB $3 < M[4
LB $2<— M[O
LB $2< M[12 | M
LB $2<M[5] M
LB $2<— M[12 | M
LB $2<M[5] M
LB $2<— M[12 | M
LB $2<M[5] M

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 4+2+2

==
S W

Hits: 3

(WY
U

Comparison: Fully Associative

Processor Cache Memory
4 cache lines
2 word block

4 bit tag field
1 bit block offset field
tag data

100
110

B $1<M[1
LB $2< M[5
LB §3<—M[1 0000 100
LB $3 < M[4
LB $2 < M[0 110
LB $2 < M[12 | M 0010
LB $2<M[5]H
LB $2<—M[12]H 110110
LB $2<M[5]H

LB $2<— M[12]H
LB $2<M[5]H L

Misses: 3

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

==
S W

Hits: 4+2+2

(WY
U

Comparison: 2 Way Set Assoc

2 sets Memory
2 word block

3 bit tag field
1 bit set index field
tag data 1 pit block offset field

0

Processor

100
110

LB $1 < M[1
LB $2< M[5
LB $3<— M[1
LB $3 < M[4
LB $2 < M[O
LB $2 « M[12
LB $2< M[5
LB $2 < M[12
LB $2< M[5
LB $2 «— M[12
LB $2< M[5

(WY
©C WO NOTULLDH WNEDO

=
N =

[
vi b W

Comparison: 2 Way Set Assoc

2 sets Memory

2 word block

3 bit tag field

1 bit set index field
tag data 1 pit block offset field

0

Processor

100
110

LB $1< M[1
LB $2< M[5
LB $3<— M[1
LB $3<— M[4
LB $2 < M[O
LB $2 « M[12
LB $2< M[5
LB $2 < M[12
LB $2< M[5
LB $2 < M[12
LB $2< M[5

OO NOOULDE WNERERO

TrTrxx=<<zTxx<=<

e
N = O

Misses: 4

==
S W

Hits: 7

(WY
U

Summary on Cache Organization

Direct Mapped = simpler, low hit rate
Fully Associative = higher hit cost, higher hit rate
N-way Set Associative 2 middleground

Misses

Cache misses: classification

Cold (aka Compulsory)

* The line is being referenced for the first time
— Block size can help

Capacity
 The line was evicted because the cache was too small
* i.e. the working set of program is larger than the cache

Conflict

* The line was evicted because of another access whose
index conflicted

— Not an issue with fully associative

Cache Performance

Average Memory Access Time (AMAT)

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped
Data cost: 3 cycle per word access
Lookup cost: 2 cycle
Mem (DRAM): 4GB
Data cost: 50 cycle plus 3 cycle per word

Performance depends on:
Access time for hit, hit rate, miss penalty

Basic Cache Organization

Q: How to decide block size?

Experimental Results

10%
4K

[\
o
rate

—o—
(@
A e —CO— =)= o 64K
+
0% . —4 A — 256K
16 32 64 128 256

Block size

Tradeoffs

For a given total cache size,

larger block sizes mean....
* fewer lines
* so fewer tags, less overhead

* and fewer cold misses (within-block “prefetching”)

But also...

* fewer blocks available (for scattered accesses!)
* so more conflicts

* and larger miss penalty (time to fetch block)

Summary

Caching assumptions
* small working set: 90/10 rule
e can predict future: spatial & temporal locality

Benefits

* big & fast memory built from (big & slow) + (small &
fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit
rate

* Fully Associative = higher hit cost, higher hit rate

* Larger block size = lower hit cost, higher miss
penalty

