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Announcements

Prelim next week
Tuesday at 7:30
Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*
Go based on netid
Prelim reviews
Friday and Sunday evening. 7:30 again.
Location: TBA on piazza
Prelim conflicts
Contact KB, Prof. Weatherspoon, Andrew Hirsch
Survey
Constructive feedback is very welcome




Administrivia

Prelim1.:
* Time: We will start at 7:30pm sharp, so come early
* Loc: Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*
Closed Book
*  Cannot use electronic device or outside material

Practice prelims are online in CMS

Material covered everything up to end of this week
Everything up to and including data hazards
Appendix B (logic, gates, FSMs, memory, ALUs)
Chapter 4 (pipelined [and non] MIPS processor with hazards)
Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
Chapter 1 (Performance)
HW1, LabO, Lab1, Lab2




Hazards

3 kinds

e Structural hazards

— Multiple instructions want to use same unit

e Data hazards

— Results of instruction needed before

* Control hazards
— Don’t know which side of branch to take

1) Structural: say only 1 memory for instruction read and the MEM stage. That is a
structural hazard. We have designed the MIPS ISA and our implementation of
separate memory for instruction and data to avoid this problem. MIPS is designed
very carefully to not have any structural hazards.

2) Data hazards arise when data needed by one instruction has not yet been
computed (because it is further down the pipeline). We need a solution for this.

3) Control hazards arise when we don’t know what the PC will be. This makes it not
possible to push the next instruction down the pipeline. Till we know what the
issue is.



How to handle data hazards

* What to do if data hazard detected?
* Options
* Nothing
* Change the ISA to match implementation
« Stall

* Pause current and subsequent instructions till safe
*  Slow down the pipeline (add bubbles to pipeline)

* Forward/bypass
* Forward data value to where it is needed

Nothing: Modify ISA to match implementation (not great as an option,
violates abstraction. Requires restructuring by application. Might not always
be possible).

Stall: Pause current and all subsequent instruction

Forward/Bypass: Steal correct value from elsewhere in pipeline




Forwarding

Forwarding bypasses some pipelined stages forwarding
a result to a dependent instruction operand (register)




Forwarding Example

Clock cycle

addr3,r1, r2

subr5,r3,r5

orr6,r3,r4

addr6,r3,r8




Forwarding

Forwarding bypasses some pipelined stages forwarding
a result to a dependent instruction operand (register)

Three types of forwarding/bypass
* Forwarding from Ex/Mem registers to Ex stage (M—Ex)
* Forwarding from Mem/WB register to Ex stage (W—Ex)
* RegisterFile Bypass




Forwarding Datapath 1

addr3,rl, r2

subr5, r3,rl

Note that the arrow is not going backward in time.




Forwarding Datapath

E
=
]

IF/ID ID/Ex Ex/Mem
Three types of forwarding/bypass
* Forwarding from Ex/Mem registers to Ex stage (M—Ex)
* Forwarding from Mem/WB register to Ex stage (W — Ex)
* RegisterFile Bypass

See where the hazard detection is. Forward unit is in the execute stage,
because that is where you actually need the data.




Forwarding Datapath

detect
hazard

IF/ID

Three types of forwarding/bypass

* Forwarding from Ex/Mem registers to Ex stage (M—Ex)

* Forwarding from Mem/WB register to Ex stage (W — Ex)
* RegisterFile Bypass

Why is the forward unit here. Because it does not need to be earlier.




Forwarding Datapath 1

Ex/MEM to EX Bypass
* EX needs ALU result that is still in MEM stage
* Resolve:
Add a bypass from EX/MEM.D to start of EX

How to detect? Logic in Ex Stage:
forward = (Ex/M.WE && EX/M.Rd !=0 &&
ID/Ex.Ra == Ex/M.Rd)
| | (same for Rb)

assumes (WE=0 implies rD=0) everywhere, similar for rA needed, rB needed
(can ensure this in ID stage)




Forwarding Datapath 2

addr3, rl, r2
subr5, r3,rl

orr6,r3,r4




Forwarding Datapath 2

Mem/WB to EX Bypass
* EX needs value being written by WB
* Resolve:
Add bypass from WB final value to start of EX

How to detect? Logic in Ex Stage:
forward = (M/WB.WE && M/WB.Rd != 0 &&
ID/Ex.Ra == M/WB.Rd &&
| | (same for Rb)
Is this it?
Not quite!

assumes (WE=0 implies rD=0) everywhere, similar for rA needed, rB needed
(can ensure this in ID stage)




Forwarding Datapath 2

addr3,rl1,r2 addr3, rl, r2

subr5, r3, r5 subr3, r3,r5
)
orr6,r3, r4 orre, r3,rd

addr6, r3,r8 addr6, r3,r8

How to detect? Logic in Ex Stage:
M/WB (WE on, Rd !=0) and (M/WB.Rd == ID/Ex.Ra)
also NOT(Ex/M.Rd == ID/Ex.Ra) and (WE, Rd!= 0))

Rb same as Ra

assumes (WE=0 implies rD=0) everywhere, similar for rA needed, rB needed
(can ensure this in ID stage)




Register File Bypass

Register File Bypass
* Reading a value that is currently being written
Detect:
((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)
Resolve:
Add a bypass around register file (WB to ID)

Better: just negate register file clock
— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle
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Register File Bypass

| %m
s, 75, 1 Mo w o]

orr6, r3, r4

addr6, r3, r8




Are we done yet?

addr3, rl, r2
Iw ré4, 20(r8)
orr6, r3, r4

addr6, r3, r8
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Memory Load Data Hazard

What happens if data dependency after a load
word instruction?

Memory Load Data Hazard
* Value not available until after the M stage
* So: next instruction can’t proceed if hazard detected

often see lw ...; nop; ...
we will stall for our project 2
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Memory Load Data Hazard

load-use stall F—————

requires one bubble




Memory Load Data Hazard

load-use stall F—————

Need to go back in time




Memory Load Data Hazard

load-use stall F—————

requires one bubble




Memory Load Data Hazard

IF/ID

Nell
If(ID/Ex.MemRead &&
IF/ID.Ra == ID/Ex.Rd

It happens in an earlier stage. You stall since you don’t want to go ahead from
the ID stage unless you are ready.

Walk through what happens with a




Memory Load Data Hazard

Load Data Hazard
* Value not available until WB stage
* So: next instruction can’t proceed if hazard detected

Resolution:
* MIPS 2000/3000: one delay slot
— ISA says results of loads are not available until one cycle later
— Assembler inserts nop, or reorders to fill delay slot
* MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid stalling in the load
delay slot

For stall, how to detect? Logic in ID Stage
— Stall = ID/Ex.MemRead &&
(IF/ID.Ra == ID/Ex.Rd | | IF/ID.Rb == ID/Ex.Rd)

often see lw ...; nop; ...
we will stall for our project 2
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Quiz

add r3, ri1, r2
nand r5, r3, r4
add r2, r6, r3
lw r6, 24(r3)

sw ré6, 12(r2)

Find all hazards, and say how they are resolved
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Find all hazards, and say how they are resolved
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add

1w %, | . RegisterFile (RF) Bypass
sw y 12(r2)

Stall
+ Forwarding from M/W—ID/Ex (W—EXx)

Find all hazards, and say how they are resolved
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Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall
* Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
* Otherwise, fall back to stalling or require a delay slot

1: ISA tied to impl; messy asm; impl easy & cheap; perf depends on asm.

2: ISA correctness not tied to impl; clean+slow asm, or messy+fast asm; impl easy and
cheap; same perf as 1.

3: ISA perf not tied to impl; clean+fast asm; impl is tricky; best perf
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Why are we learning about this?

Logic and gates
Numbers & arithmetic
States & FSMs
Memory

A simple CPU

Performance

Pipelining
Hazards: Data and Control

29



Control Hazards

What about branches?

A control hazard occurs if there is a control instruction
(e.g. BEQ) and the program counter (PC) following the
control instruction is not known until the control
instruction computes if the branch should be taken

e.g.
0x10: beqgrl, r2,L
0x14: addr3,r0, r3
0x18: sub r5, r4, r6
Ox1C: L: or r3,r2, r4

Q: what happens with branch/jump in branch delay slot?

A: bad stuff, so forbidden

Q: why one, not two?

A: can move branch calc from EX to ID; will require new bypasses into ID stage; or can
just zap the second instruction

Q: performance?

A: stall is bad
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Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PCis not known until 2 cycles after branch/jump

What happens to instr following a branch, if branch taken?

Stall (+ Zap/Flush)

* prevent PC update

* clear IF/ID pipeline register
— instruction just fetched might be wrong, so convert to nop

* allow branch to continue into EX stage

Q: what happens with branch/jump in branch delay slot?

A: bad stuff, so forbidden

Q: why one, not two?

A: can move branch calc from EX to ID; will require new bypasses into ID stage; or can
just zap the second instruction

Q: performance?

A: stall is bad



Control Hazards

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

18: subr5, r4, r6

lc1Q>or r3, r2, r4

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

10: beqrl, r2,L
14| addr3, r0, 13
18| subr5, r4, r6|

1C: L:orr3,r2,r4

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

14:add r3,r0,r3 10:beqrl, r2,L

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

10: beqrl, r2, L

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

10: beqrl, r2, L

branch decision in EX
need 2 stalls, and maybe kill




Reduce the cost of control hazard?

Can we forward/bypass values for branches?
* We can move branch calc from EX to ID

* will require new bypasses into ID stage; or can just zap
the second instruction

What happens to instructions following a branch, if
branch taken?

* Still need to zap/flush instructions

Is there still a performance penalty for branches

* Yes, need to stall, then may need to zap (flush)
subsequent instructions that have already been fetched

Q: what happens with branch/jump in branch delay slot?

A: bad stuff, so forbidden

Q: why one, not two?

A: can move branch calc from EX to ID; will require new bypasses into ID stage; or can
just zap the second instruction

Q: performance?

A: stall is bad



Control Hazards

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

E——————
| | \ i |

|
14| add r3,r0, r3|
|

18: subr5, r4, r6

lc1Q>or r3, r2, r4

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

10: beqrl,r2,L

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

14:add r3,r0,r3 10:beqrl, r2,L

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

1C:orr3,r2,r4 NOP 10: beqrl, r2, L

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

10: beqrl, r2, L

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
i.e. next PCis not known until 2 cycles after branch/jump

* Can optimize and move branch and jump decision to stage 2
(ID)
i.e. next PCis not known until 1 cycles after branch/jump

Stall (+ Zap)
* prevent PC update

* clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage

Q: what happens with branch/jump in branch delay slot?

A: bad stuff, so forbidden

Q: why one, not two?

A: can move branch calc from EX to ID; will require new bypasses into ID stage; or can
just zap the second instruction

Q: performance?

A: stall is bad



Takeaway

Control hazards occur because the PC following a control
instruction is not known until control instruction
computes if branch should be taken or not

If branch taken, then need to zap/flush instructions.
There still a performance penalty for branches: Need to

stall, then may need to zap (flush) subsequent
instructions that have already been fetched

We can reduce cost of a control hazard by moving branch
decision and calculation from Ex stage to ID stage. This
reduces the cost from flushing two instructions to only
flushing one.
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Reduce cost of control hazard more?

Delay Slot

* ISA says N instructions after branch/jump always
executed
— MIPS has 1 branch delay slot

— i.e. whether branch taken or not, instruction following
branch is always executed
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Delay Slot

Pipeline is humming




Delay Slot

D

ec
granc

e

10: beqrl, r2,L
14: addr3, r0, r3
18: subr5, r4, r6

1C: L:orr3,r2,r4

branch decision in EX
need 2 stalls, and maybe kill




Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
i.e. next PCis not known until 2 cycles after branch/jump
* Can optimize and move branch and jump decision to stage 2 (ID)
i.e. next PC is not known until 1 cycles after branch/jump

Stall (+ Zap)
* prevent PC update

* clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

* allow branch to continue into EX stage

Delay Slot

* |ISA says N instructions after branch/jump always executed
— MIPS has 1 branch delay slot

Q: what happens with branch/jump in branch delay slot?

A: bad stuff, so forbidden

Q: why one, not two?

A: can move branch calc from EX to ID; will require new bypasses into ID stage; or can
just zap the second instruction

Q: performance?

A: stall is bad

GPUs have such long pipelines it is just not realistic to add delay slots. So the penalty
of branching is very high typically. Various architectural approaches to address that.



Takeaway

Control hazards occur because the PC following a control
instruction is not known until control instruction computes if
branch should be taken or not. If branch taken, then need to zap,
flush instructions. There still a performance penalty for branches
Need to stall, then may need to zap (flush) subsequent
instructions that have already been fetched.

We can reduce cost of a control hazard by moving branch decisio

and calculation from Ex stage to ID stage. This reduces the cost
from flushing two instructions to only flushing one.

Delay Slots can potentially increase performance due to control
hazards by putting a useful instruction in the delay slot since the
instruction in the delay slot will always be executed. Requires
software (compiler) to make use of delay slot. Put nop in delay
slot if not able to put useful instruction in delay slot.

54



Reduce cost of Ctrl Haz even further?

Speculative Execution

* “Guess” direction of the branch
— Allow instructions to move through pipeline

— Zap them later if wrong guess

* Useful for long pipelines

Q: How to guess?
A: constant; hint; branch prediction; random; ...

55



Speculative Execution: Loops

Pipeline so far
* “Guess” (predict) that the branch will not be taken

We can do better!
* Make prediction based on last branch
* Predict “take branch” if last branch “taken”
* Or Predict “do not take branch” if last branch “not
taken”

* Need one bit to keep track of last branch
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Speculative Execution: Loops

What is accuracy of branch While (r3 #0) {.... r3--;}

predictor? Top: BEQZr3, End

Wrong twice per loop! "

Once on loop enter and exit J Top
We can do better with 2 bits ~ End:
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Speculative Execution: Branch Execution

Branch Not Taken (NT)

Predict Taken 2 (PT2) Predict Taken 1 (PT1)

Branch Taken (T)

Branch Taken (T) Branch Not Taken (NT)
Branch Taken (T)

Predict Not Taken 2 Predict Not Taken 1
(PT2) (PT1)

Branch Not Taken (NT)

Sates is a 2 bit prediction scheme
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Summary

Control hazards
* |s branch taken or not?

* Performance penalty: stall and flush

Reduce cost of control hazards

* Move branch decision from Ex to ID
2 nops to 1 nop

* Delay slot

* Compiler puts useful work in delay slot. ISA level.

* Branch prediction
* Correct. Great!

* Wrong. Flush pipeline. Performance penalty
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Hazards Summary

Data hazards

Control hazards

Structural hazards
* resource contention

* so far: impossible because of ISA and pipeline design

Q: what if we had a “copy 0(r3), 4(r3)” instruction, as the x86 does, or “add r4,
rd4, 0(r3)"?
A: structural hazard




