Performance and Pipelining

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 1.6, 4.5-4.6

Announcements

HW 1
Quite long. Do not wait till the end.
PA 1 design doc
Critical to do this, else PA 1 will be hard

HW 1 review session
Fri (2/21) and Sun (2/23). 7:30pm.
Location: Olin 165

Prelim 1 review session
Next Fri and Sun. 7:30pm. Location: TBA

Control Flow: Absolute Jump
00001010100001001000011000000011

op immediate -—-m
6 bits

op Mnemonic Description
0x2 J target PC=(PC+4);, ,, * target * 00

Absolute addressing for jumps (PC+4),, ,, will be the same
« Jump from 0X30000000 to 0£20000000?

— But: Jumps from Ox2FFFFFFc to Ox3xxxxxxx are possible, but not reverse
* Trade-off: out-of-region jumps vs. 32-bit instruction encoding

MIPS Quirk:
* jump targets computed using already incremented PC

Where ¢ is used to concatenate
0011 0000 0000 0000 0000 0000 0000 0000 (28)
0010 0000 0000 0000 0000 0000 0000 0000 (28)

PC: no explicit

Two’s Complement

Non-negatives
(as usual):

Negatives
(two’s complement: flip then add 1):

choose -8 so we have a sign bit

+0=-0

+0 = 0000
+1 = 0001
+2 = 0010

+3=0011
+4 = 0100
+5=0101
+6 =0110
+7 =0111

wraps from +7 to -8
asymmetric: no +8

Range of values with n bits goes from unsigned: 0 to 2*n—1
For signed: 2”(n-1)-1 to -2”n

flip = 1111
flip = 1110
flip = 1101
flip = 1100
flip = 1011
flip = 1010
flip = 1001
flip = 1000
flip = 0111

-0 =0000
-1=1111
-2=1110
-3=1101
-4 =1100
-5=1011
-6 =1010
-7 =1001
-8 =1000

2’s complement

1101 (-3)

10 0101

Take 1101.
Subtract 1: 1100, flip bits 0011 which is 3. Therefore 1101 represents -3

MSB x (-27) + all the other bits evaluated as usual
-8+4+1=-8+5=-3

MSB x (-275) + all the other bits evaluated as usual

Try another example

-32+5=-27

Subtract 1: 100100, flip bits 011011. Thisis 16 + 8 + 3 =27

MSB x (-275) + all the other bits evaluated as usual

Goals for today

Performance
* What is performance?
* How to get it?

Pipelining

Performance

Complex question
How fast is the processor?
How fast your application runs?
How quickly does it respond to you?
How fast can you process a big batch of jobs?
How much power does your machine use?

Measures of Performance

Clock speed
e 1 MHz, 108 Hz: cycle is 1 microsecond (107°)

* 1Ghz, 10° Hz: cycle is 1 nanosecond (10°)
e 1Thz, 102 Hz: cycle is 1 picosecond (1012)

Instruction/application performance
* MIPs (Millions of instructions per second)

* FLOPs (Floating point instructions per second)

GPUs: GeForce GTX Titan (2,688 cores, 4.5 Tera flops, 7.1 billion
transistors, 42 Gigapixel/sec fill rate, 288 GB/sec)

* Benchmarks (SPEC)

Peta: 107(-15)
Exa: 107(-18)

Zotta: 10(-21)
Yotta: 107(-24)

Benchmarks like SPEC are used to compare across architectures

Measures of Performance

Latency

* How long to finish my program
— Response time, elapsed time, wall clock time
— CPU time: user and system time

Throughput

e How much work finished per unit time

Ideal: Want high throughput, low latency
... also, low power, cheap (SS) etc.

How to make the computer faster?

Decrease latency
Critical Path

* Longest path determining the minimum time needed
for an operation

* Determines minimum length of cycle, maximum clock
frequency

Optimize for delay on the critical path
— Parallelism (like carry look ahead adder)
— Pipelining
— Both

Is the the AND path or the 32 bit adder path that is going to determine your
performance in your ALU from Lab1?

Critical path is what determines what is the slowest path through the logic. And
therefore, it determines the minimum length of the cycle. That in turn determines the
maximum clock frequency.

For example if the critical path is 1 nanosecond, the clock frequency is at most 1 GHz.

10

Latency: Optimize Delay on Critical Path

E.g. Adder performance

32 Bit Adder Design Space
2-Way Carry-Skip = 360 gates
4-Way Carry-Skip = 600 gates

Split Look-Ahead = 800 gates

Time

= 35 gate delays

= 18 gate delays

= 10 gate delays

11

Multi-Cycle Instructions
But what to do when operations take diff. times?

E.g: Assume:
* load/store: 100 ns < 10 MHz ms = 103 second
. . us = 10 seconds
e arithmetic:50ns . 20 MHz s = 10 seconds
* branches: 33 ns < 30 MHz

Single-Cycle CPU
10 MHz (100 ns cycle) with

— 1 cycle per instruction

100ns = 10MHz; 50ns = 20MHz; 33ns = 30 MHz

12

Multi-Cycle Instructions

Multiple cycles to complete a single instruction

E.g: Assume:
* load/store: 100 ns <— 10 MHz
e arithmetic: 50 ns <— 20 MHz
* branches: 33 ns <«— 30 MHz

Multi-Cycle CPU
30 MHz (33 ns cycle) with

* 3 cycles per load/store
* 2 cycles per arithmetic
e 1cycle per branch

100ns = 10MHz; 50ns = 20MHz; 33ns = 30 MHz

ms = 103 second
us = 10°® seconds
ns = 10 seconds

13

Cycles Per Instruction (CPI)

Instruction mix for some program P, assume:
* 25% load/store (3 cycles / instruction)
* 60% arithmetic (2 cycles / instruction)

* 15% branches (1 cycle/instruction)

Multi-Cycle performance for program P:
3*25+2*60+1*.15=2.1
average cycles per instruction (CPl) = 2.1

Multi-Cycle @ 30 MHz < 30M cycles/sec +2.0 cycles/instr

'S
Single-Cycle @ 10 MHz E

MIPS = millions of instructions per second

0.25x3+0.6x2+0.1x1=0.75+12+.15=2.1

14

Total Time
CPU Time = # Instructions x CPI x Clock Cycle Time

Say for a program with 400k instructions, 30 MHz:
Time = 400k x 2.1 x 33 ns = 27 millisecs

15

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run
2x faster by making arithmetic instructions faster

Instruction mix (for P):
* 25% load/store, CPI =3
* 60% arithmetic, CPlI =2
* 15% branches, CPI=1

So the goal is to make it run at 30 MIPs.
CPI=(.25x3+.6x2+.15x1)/1=2.1
MIPS = 30 MHz/2.1 = 14.28 MIPS. Call it 15 MIPS

Want to double It to 28.56

16

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run
2x faster by making arithmetic instructions faster

Instruction mix (for P):
* 25% load/store, CPl =3
* 60% arithmetic, CPlI =2
* 15% branches, CPI=1

First lets try CPI of 1 for arithmetic.
Is that 2x faster overall? No
How much does it improve performance?

So the goal is to make it run at approximately 30 MIPs.

Original CPI=(.25x3+.6x2+.15x1)/1=2.1
MIPS = 30 MHz/2.1 = 14.28 MIPS. Call it 15 MIPS

Say you drop the CPI for the arithmetic operation to 1. Will that double it? No.

.25x3+.6+.15=1.5
30 MHz/1.5 = 20MIPS

17

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS)
run 2x faster by making arithmetic instructions
faster

Instruction mix (for P):

* 25% load/store, CPl =3
* 60% arithmetic, CPI =2
* 15% branches, CPI=1

But we want to half our CPI. Let the new arithmetic operation have a CPI of x.

3x.25+x*0.6+.15=1.05
.75+.15+x*0.6=1.05
x= 0.25

That’s a big improvement you need!

18

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS)
run 2x faster by making arithmetic instructions
faster

Instruction mix (for P):
* 25% load/store, CPl =3
* 60% arithmetic, CPI =2
* 15% branches, CPI=1

To double performance CPI has to go from 2
to 0.25

19

Amdahl’s Law

Amdahl’s Law

Execution time after improvement =

execution time affected by improvement i .
—————————————————————— + execution time unaffected
amount of improvement

Or: Speedup is limited by popularity of improved feature

Corollary: Make the common case fast
Caveat: Law of diminishing returns

Consider our GPU example with 2k cores.

Say we have a program that takes 2000 seconds to run: 200 seconds is the start up
time (reading data), and 1800 is the “main” algorithm.! This doesn’t seem so bad.
200/2000 = 10% only of startup and 90% of the program is in the slow algorithm.

We want to speed it up by running on a GPU with 2000 cores! Ideally we would get
2000x speedup and the program will run in 1 second.

But when we port it to the GPU, we can only improve the “main” algorithm which is
highly parallelizable. You can improve the 1800 seconds down to < 1 second say,
because you can fully parallelize the algorithm on 2000 cores.

But still the time for the whole program is 201 seconds. So you threw 2000 cores at
the problem, but your speedup is 2000/201 which is approximately 10x. So with 2000
cores you only got 10x speedup. Amdahl’s law expresses that “unfortunate” relation.

20

Review: Single cycle processor

Review: Single Cycle Processor
Advantages

* Single cycle per instruction make logic and clock simple
Disadvantages

* Since instructions take different time to finish, memory
and functional unit are not efficiently utilized

* Cycle time is the longest delay
— Load instruction

* Best possible CPl is 1 (actually < 1 w parallelism)

— However, lower MIPS and longer clock period (lower clock
frequency); hence, lower performance

22

Review: Multi Cycle Processor

Advantages

* Better MIPS and smaller clock period (higher clock
frequency)

* Hence, better performance than Single Cycle
processor

Disadvantages
* Higher CPI than single cycle processor

Pipelining: Want better Performance

» want small CPI (close to 1) with high MIPS and short
clock period (high clock frequency)

23

Improving Performance

Parallelism

Pipelining

Both!

24

Single Cycle vs Pipelined Processor

See: P&H Chapter 4.5

25

The Kids 2

0}

K2
J

)

They don’t always get along...

The Bicycle

27

The Materials

28

The Instructions
N pieces, each built following same sequence:

29

Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished
Repeat for remaining tasks

No possibility for conflicts

30

Sequential Performance

Latency:
Throughput:
Concurrency:

Can we do better?

Latency =4
CPI = 4 (here the instruction is the construction of the bike)
Throughput = 2 bikes in 8 secs. So 1 task in 4 secs. So % throughput

Concurrency: 0

Design 2: Pipelined Design

Partition room into stages of a pipeline

Dave Carol Bob

One person owns a stage at a time

4 stages
4 people working simultaneously
Everyone moves right in lockstep

32

Latency:
Throughput:
Concurrency:

Pipelined Performance

Pipelined Performance

j7 8 (]9 10§

Done: 4 cycles

Done: 6 cyc|és

Latency: 4 cycles/task
Throughput: 1 task/2 cycles

Lessons

Principle:

Throughput increased by parallel execution
Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
* |dentify pipeline stages
* |solate stages from each other
* Resolve pipeline hazards (next lecture)

36

MIPs designed for pipelining

* Instructions same length
* 32 bits, easy to fetch and then decode

* 3 types of instruction formats
* Easy to route bits between stages

* Can read a register source before even knowing
what the instruction is

* Memory access through Iw and sw only
* Access memory after ALU

37

Basic Pipeline
Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— getinstruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)
— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed
5. Writeback (WB)

— update register file

This is simpler than the MIPS, but we’re using it to get the concepts across —
everything you see here applies to MIPS, but we have to deal w/ fewer bits in
these examples (that’s why I like them)

A Processor

register

control

compute
jump/branch
targets

Instruction Instruction Write-
Fetch Decode Execute Memory Back

What does that do to a clock cycle. It is the time for 1 stage. So 5 times faster in this
case (ASSUMING all stages are approximately equal sized)

Left to right flow except for the write-back phase and the branch targets that can
change the PC. Otherwise left to right.

Principles of Pipelined Implementation

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers (flip-flops) to isolate signals
between different stages

Pipelined Processor

memory register

file

control

Instruction Instruction
Fetch Decode

IF/ID EX/MEM MEM/WB

IS
E
—]
=
]

IF

Stage 1: Instruction Fetch

Fetch a new instruction every cycle
* Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for
now)

Write values of interest to pipeline register (IF/ID)
* Instruction bits (for later decoding)
* PC+4 (for later computing branch targets)

instruction
memory

addr mc

43

instruction
memory

addr mc

00 = read word

(]
£
K9]
=
o
Y
(@]
+—
(%]
Q
o

44

ID

Stage 2: Instruction Decode

On every cycle:
* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to pipeline register (ID/EX)
* Control information, Rd index, immediates, offsets, ...
* Contents of Ra, Rb
* PC+4 (for computing branch targets later)

result

dest
WE
Rd

> D

A
register

file B
Ra Rb

decode

Rest of pipeline

e
O
)
Q
w
C
o
5
(S}
>
—
4+
(%]
=
-
()
oo
©
4
(%]

Early decode: decode all instr in ID, pass control signals to later stages
Late decode: decode some instr in ID, pass instr so each stage computes its own
control signals

46

Stage 3: Execute

On every cycle:
* Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
* Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
* Control information, Rd index, ...
* Result of ALU operation
* Value in case this is a memory store instruction

auiadid jo 159y

o] o] [=1[=]

x ()
[v]feflae] [res] [ee]

3p023Q uondnisu| :z ageis

48

Stage 4: Memory

On every cycle:
* Read EX/MEM pipeline register to get values and control bits

* Perform memory load/store if needed
— address is ALU result

Write values of interest to pipeline register (MEM/WB)
* Control information, Rd index, ...
* Result of memory operation
* Pass result of ALU operation

auiadid jo 159y

mc

dout

-
o
S
)
S

din

o]] el

91n2ax3 :¢ a8els

50

Stage 5: Write-back

On every cycle:
* Read MEM/WSB pipeline register to get values and control bits
* Select value and write to register file

Alowa|y :¢ 28eis

52

ID/EX

EX/MEM

MEM/WB

53

Pipelining Recap

Powerful technique for masking latencies
* Logically, instructions execute one at a time
* Physically, instructions execute in parallel

— Instruction level parallelism

Abstraction promotes decoupling
* Interface (ISA) vs. implementation (Pipeline)

