
Prelim 3 Review

Hakim Weatherspoon

CS 3410, Spring 2013

Computer Science

Cornell University

Administrivia

Pizza party: Project3 Games Night Cache Race
• Tomorrow, Friday, April 26th, 5:00-7:00pm

• Location: Upson B17

Prelim 3
• Tonight, Thursday, April 25th, 7:30pm

• Two Locations: PHL101 and UPSB17
– If NetID begins with ‘a’ to ‘j’, then go to PHL101 (Phillips 101)

– If NetID begins with ‘k’ to ‘z’, then go to UPSB17 (Upson B17)

Project4: Final project out next week
• Demos: May 14-15

• Will not be able to use slip days

Goals for Today

Prelim 3 review

• Caching,

• Virtual Memory, Paging, TLBs

• Operating System, Traps, Exceptions,

• Multicore and synchronization

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

Big Picture

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

Memory Hierarchy and Caches

Memory
Pyramid

Disk (Many GB – few TB)

Memory (128MB – few GB)

L2 Cache (½-32MB)

RegFile
100s bytes

Memory Pyramid
< 1 cycle access

1-3 cycle access

5-15 cycle access

50-300 cycle access

L3 becoming more
common
(eDRAM ?)

These are rough numbers: mileage may vary for latest/greatest
Caches usually made of SRAM (or eDRAM)

L1 Cache
(several KB)

1000000+
 cycle access

Memory Hierarchy

Insight for Caches

If Mem[x] is was accessed recently...
… then Mem[x] is likely to be accessed soon

• Exploit temporal locality:
– Put recently accessed Mem[x] higher in memory hierarchy

 since it will likely be accessed again soon

… then Mem[x ± ε] is likely to be accessed soon
• Exploit spatial locality:

– Put entire block containing Mem[x] and surrounding addresses
higher in memory hierarchy since nearby address will likely

 be accessed

Memory Hierarchy

110

130

150

160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1  M[1]
LB $2  M[5]
LB $3  M[1]
LB $3  M[4]
LB $2  M[0]

Cache Processor

tag data

$0
$1
$2
$3

Memory

100

120

140

170

190

210

230

250

4 cache lines
2 word block

0

0

0

0

V

Three Common Cache Designs
A given data block can be placed…

• … in exactly one cache line  Direct Mapped

• … in any cache line  Fully Associative

• … in a small set of cache lines  Set Associative

Direct Mapped Cache

V Tag Block

 Tag Index Offset

=

hit? data

word select

32bits

Fully Associative Cache

V Tag Block

word select

hit? data

line select

= = = =

32bits

64bytes

 Tag Offset

3-Way Set Associative Cache

word select

hit? data

line select

= = =

32bits

64bytes

 Tag Index Offset • Each set is 3-way
• 4 sets

Cache Misses

Three types of misses

• Cold (aka Compulsory)

– The line is being referenced for the first time

• Capacity

– The line was evicted because the cache was not large
enough

• Conflict

– The line was evicted because of another access whose
index conflicted

Writing with Caches

Eviction

Which cache line should be evicted from the cache
to make room for a new line?

• Direct-mapped
– no choice, must evict line selected by index

• Associative caches
– random: select one of the lines at random

– round-robin: similar to random

– FIFO: replace oldest line

– LRU: replace line that has not been used in the longest
time

Cached Write Policies
Q: How to write data?

CPU

Cache

SRAM

Memory

DRAM

addr

data

If data is already in the cache…

No-Write
• writes invalidate the cache and go directly to memory

Write-Through
• writes go to main memory and cache

Write-Back
• CPU writes only to cache

• cache writes to main memory later (when block is evicted)

What about Stores?

Where should you write the result of a store?

• If that memory location is in the cache?

– Send it to the cache

– Should we also send it to memory right away?

 (write-through policy)

– Wait until we kick the block out (write-back policy)

• If it is not in the cache?

– Allocate the line (put it in the cache)?

 (write allocate policy)

– Write it directly to memory without allocation?

 (no write allocate policy)

Cache Performance

Cache Performance

Consider hit (H) and miss ratio (M)

H x ATcache + M x (ATcache + Atmemory)

Hit rate = 1 – Miss rate

Access Time is given in cycles

Ratio of Access times, 1:50

90% : 1 + .1 x 50 = 6

95% : 1 + .05 x 50 = 3.5

99% : 1 + .01 x 50 = 1.5

99.9%: 1 + .001 x 50 = 1.05

= ATcache + M x ATmemory

Cache Conscious Programming

Cache Conscious Programming

Every access is a cache miss!

(unless entire matrix can fit in cache)

// H = 12, NCOL = 10

int A[NROW][NCOL];

for(col=0; col < NCOL; col++)

 for(row=0; row < NROW; row++)

 sum += A[row][col];

1 11 21

2 12 22

3 13 23

4 14 24

5 15

25

6 16 26

7 17 …

8 18

9 19

10 20

Cache Conscious Programming

Block size = 4  75% hit rate

Block size = 8  87.5% hit rate

Block size = 16  93.75% hit rate

And you can easily prefetch to warm the cache.

// NROW = 12, NCOL = 10

int A[NROW][NCOL];

for(row=0; row < NROW; row++)

 for(col=0; col < NCOL; col++)

 sum += A[row][col];

1 2 3 4 5 6 7 8 9 10

11 12 13 …

MMU, Virtual Memory, Paging, and TLB’s

Multiple Processes

How to Run multiple processes?

Time-multiplex a single CPU core (multi-tasking)

• Web browser, skype, office, … all must co-exist

Many cores per processor (multi-core)
 or many processors (multi-processor)

• Multiple programs run simultaneously

Multiple Processes

Q: What happens when another program is
executed concurrently on another processor?

A: The addresses will conflict

• Even though, CPUs may take

 turns using memory bus

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

Virtual Memory

Virtual Memory: A Solution for All Problems

Each process has its own virtual address space

• Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access

• all access is indirect through a virtual address

• translate fake virtual address to a real physical
address

• redirect load/store to the physical address

Virtual Memory Advantages

Advantages

Easy relocation

• Loader puts code anywhere in physical memory

• Creates virtual mappings to give illusion of correct
layout

Higher memory utilization

• Provide illusion of contiguous memory

• Use all physical memory, even physical address 0x0

Easy sharing

• Different mappings for different programs / cores

Different Permissions bits

Address Space

Programs load/store to virtual addresses

Actual memory uses physical addresses

Memory Management Unit (MMU)

• Responsible for translating on the fly

• Essentially, just a big array of integers:
 paddr = PageTable[vaddr];

CPU

MMU

A
B
C

X

Y
Z

X
Y
Z

C
B

A

CPU

MMU

0x1000 0x1000

Virtual Address
Space

Physical Address Space

Virtual Address
Space

Attempt #1: Address Translation

Attempt #1: For any access to virtual address:

• Calculate virtual page number and page offset

• Lookup physical page number at PageTable[vpn]

• Calculate physical address as ppn:offset

vaddr Page Offset Virtual page number

Page offset Physical page number

Lookup in PageTable

paddr

31 12 11 0

 12 11 0

CPU
generated

Main
Memory

e.g. Page size
4 kB = 212

Beyond Flat Page Tables
Assume most of PageTable is empty

How to translate addresses?

10 bits

PTBR

10 bits 10 bits vaddr

PDEntry

Page Directory

Page Table

PTEntry
Page

Word

2

Multi-level PageTable

* x86 does exactly this

4kB

#entries = pg sz/pte
4kB / 4B =1024 PTEs

Virtual Addressing with a Cache

Thus it takes an extra memory access to
translate a vaddr (VA) to a paddr (PA)

CPU
Trans-

lation
Cache

Main

Memory

VA PA miss

hit

data

• This makes memory (cache) accesses

very expensive (if every access was really

two accesses)

A TLB in the Memory Hierarchy

A TLB miss:

• If the page is not in main memory, then it’s a true
page fault

– Takes 1,000,000’s of cycles to service a page fault

TLB misses are much more frequent than true
page faults

CPU
TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Trans-

lation

hit

miss

Virtual vs. Physical Caches

CPU

Cache

SRAM

Memory

DRAM

addr

data

MMU

Cache

SRAM
MMU

CPU

Memory

DRAM

addr

data

Cache works on physical addresses

Cache works on virtual addresses

Q: What happens on context switch?
Q: What about virtual memory aliasing?
Q: So what’s wrong with physically addressed caches?

Indexing vs. Tagging

Physically-Addressed Cache
• slow: requires TLB (and maybe PageTable) lookup first

Virtually-Indexed, Virtually Tagged Cache
• fast: start TLB lookup before cache lookup finishes

• PageTable changes (paging, context switch, etc.)
  need to purge stale cache lines (how?)

• Synonyms (two virtual mappings for one physical page)
 could end up in cache twice (very bad!)

Virtually-Indexed, Physically Tagged Cache
• ~fast: TLB lookup in parallel with cache lookup

• PageTable changes  no problem: phys. tag mismatch

• Synonyms  search and evict lines with same phys. tag

Virtually-Addressed Cache

Indexing vs. Tagging

Typical Cache Setup

CPU
L2 Cache

SRAM

Memory

DRAM

addr

data

MMU

Typical L1: On-chip virtually addressed, physically tagged

Typical L2: On-chip physically addressed

Typical L3: On-chip …

L1 Cache

SRAM
TLB SRAM

Hardware/Software Boundary

Hardware/Software Boundary

Virtual to physical address translation is
assisted by hardware?

• Translation Lookaside Buffer (TLB) that caches
the recent translations

– TLB access time is part of the cache hit time

– May allot an extra stage in the pipeline for TLB access

• TLB miss

– Can be in software (kernel handler) or hardware

Hardware/Software Boundary

Virtual to physical address translation is
assisted by hardware?

• Page table storage, fault detection and updating

– Page faults result in interrupts (precise) that are then
handled by the OS

– Hardware must support (i.e., update appropriately)
Dirty and Reference bits (e.g., ~LRU) in the Page Tables

Paging

Traps, exceptions, and operating system

Operating System
Some things not available to untrusted programs:

• Exception registers, HALT instruction, MMU
instructions, talk to I/O devices, OS memory, ...

Need trusted mediator: Operating System (OS)

• Safe control transfer

• Data isolation

P1 P2 P3 P4

VM filesystem net

driver driver

disk eth MMU

Terminology

Trap: Any kind of a control transfer to the OS

Syscall: Synchronous (planned), program-to-kernel transfer

• SYSCALL instruction in MIPS (various on x86)

Exception: Synchronous, program-to-kernel transfer

• exceptional events: div by zero, page fault, page protection err,
…

Interrupt: Aysnchronous, device-initiated transfer

• e.g. Network packet arrived, keyboard event, timer ticks

* real mechanisms, but nobody agrees on these terms

Multicore and Synchronization

Multi-core is a reality…

… but how do we write multi-core safe code?

Why Multicore?

Moore’s law

• A law about transistors

(Not speed)

• Smaller means faster

 transistors

Power consumption growing with transistors

Power Trends

In CMOS IC technology

FrequencyVoltageload CapacitivePower 2 

×1000 ×30 5V → 1V

Uniprocessor Performance

Constrained by power, instruction-level

parallelism, memory latency

Why Multicore?

Moore’s law

• A law about transistors

• Smaller means faster transistors

Power consumption growing with transistors

The power wall

• We can’t reduce voltage further

• We can’t remove more heat

How else can we improve performance?

Why Multicore?

Power
1.0x

1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

1.6x

1.02x

Dual-Core
Underclocked -20%

Amdahl’s Law

Task: serial part, parallel part

As number of processors increases,

• time to execute parallel part goes to zero

• time to execute serial part remains the same

Serial part eventually dominates

Must parallelize ALL parts of task

Amdahl’s Law

Consider an improvement E

F of the execution time is affected

S is the speedup

Multithreaded Processes

Shared counters

Usual result: works fine.

Possible result: lost update!

Occasional timing-dependent failure  Difficult to debug

Called a race condition

hits = 0 + 1

read hits (0)

hits = 0 + 1
read hits (0)

T1 T2

hits = 1

hits = 0

time

Race conditions

Def: a timing dependent error involving shared state
• Whether it happens depends on how threads scheduled:

who wins “races” to instructions that update state

• Races are intermittent, may occur rarely
– Timing dependent = small changes can hide bug

• A program is correct only if all possible schedules are safe
– Number of possible schedule permutations is huge

– Need to imagine an adversary who switches contexts at the
worst possible time

Critical Sections

Basic way to eliminate races: use critical sections
that only one thread can be in

• Contending threads must wait to enter

CSEnter();
Critical section

CSExit();

T1 T2
time

CSEnter();
Critical section

CSExit();

T1 T2

Mutexes

Critical sections typically associated with mutual
exclusion locks (mutexes)

Only one thread can hold a given mutex at a time

Acquire (lock) mutex on entry to critical section
• Or block if another thread already holds it

Release (unlock) mutex on exit
• Allow one waiting thread (if any) to acquire & proceed

pthread_mutex_lock(m);

hits = hits+1;

pthread_mutex_unlock(m);

T1 T2

pthread_mutex_lock(m);

hits = hits+1;

pthread_mutex_unlock(m);

pthread_mutex_init(m);

Protecting an invariant

// invariant: data is in buffer[head..tail-1]. Protected by m.

pthread_mutex_t *m;

char buffer[1000];

int head = 0, tail = 0;

void put(char c) {

 pthread_mutex_lock(m);

 buffer[tail] = c;

 tail = (tail + 1) % n;

 pthread_mutex_unlock(m);

}

• Rule of thumb: all updates that can affect

 invariant become critical sections.

char get() {

 pthread_mutex_lock(m);

 char c = buffer[head];

 head = (head + 1) % n;

 pthread_mutex_unlock(m);

}
X what if first==last?

See you Tonight
Good Luck!

