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Administrivia 

Pizza party: Project3 Games Night Cache Race 
• Tomorrow, Friday, April 26th, 5:00-7:00pm 

• Location: Upson B17 
 

Prelim 3 
• Tonight, Thursday, April 25th, 7:30pm 

• Two Locations: PHL101 and UPSB17 
– If NetID begins with ‘a’ to ‘j’, then go to PHL101 (Phillips 101) 

– If NetID begins with ‘k’ to ‘z’, then go to UPSB17 (Upson  B17) 
 

Project4: Final project out next week 
• Demos: May 14-15 

• Will not be able to use slip days 

 

 



Goals for Today 

Prelim 3 review 

• Caching, 

• Virtual Memory, Paging, TLBs 

• Operating System, Traps, Exceptions, 

• Multicore and synchronization 
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Memory Hierarchy and Caches 



Memory 
Pyramid 

Disk (Many GB – few TB) 

Memory (128MB – few GB) 

L2 Cache  (½-32MB) 

RegFile 
100s bytes 

Memory Pyramid 
< 1 cycle access 

1-3 cycle access 

5-15 cycle access 

50-300 cycle access 

L3 becoming more 
common 
(eDRAM ?) 

These are rough numbers: mileage may vary for latest/greatest 
Caches usually made of SRAM (or eDRAM) 

L1 Cache 
(several KB) 

1000000+ 
    cycle access 



Memory Hierarchy 

Insight for Caches 
 
If Mem[x] is was accessed recently... 
… then Mem[x] is likely to be accessed soon 

• Exploit temporal locality: 
– Put recently accessed Mem[x] higher in memory hierarchy 

 since it will likely be accessed again soon 

 
 

… then Mem[x ± ε] is likely to be accessed soon 
• Exploit spatial locality: 

– Put entire block containing Mem[x] and surrounding addresses 
higher in memory hierarchy since nearby address will likely  

 be accessed 



Memory Hierarchy 
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Three Common Cache Designs 
A given data block can be placed… 

• … in exactly one cache line  Direct Mapped 

• … in any cache line  Fully Associative 

• … in a small set of cache lines  Set Associative 



Direct Mapped Cache 

V Tag Block 

 Tag Index Offset 

= 

hit? data 

word select 

32bits 



Fully Associative Cache 

V Tag Block 

word select 

hit? data 

line select 

= = = = 

32bits 

64bytes 

 Tag   Offset 



3-Way Set Associative Cache 

word select 

hit? data 

line select 

= = = 

32bits 

64bytes 

 Tag Index  Offset • Each set is 3-way 
• 4 sets 



Cache Misses 

Three types of misses 

• Cold (aka Compulsory) 

– The line is being referenced for the first time 

• Capacity 

– The line was evicted because the cache was not large 
enough 

• Conflict 

– The line was evicted because of another access whose 
index conflicted 

 



Writing with Caches 



Eviction 

Which cache line should be evicted from the cache 
to make room for a new line? 

• Direct-mapped 
– no choice, must evict line selected by index 

• Associative caches 
– random: select one of the lines at random 

– round-robin: similar to random 

– FIFO: replace oldest line 

– LRU: replace line that has not been used in the longest 
time 



Cached Write Policies 
Q: How to write data? 
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addr 

data 

If data is already in the cache… 

No-Write 
• writes invalidate the cache and go directly to memory 

Write-Through 
• writes go to main memory and cache 

Write-Back 
• CPU writes only to cache 

• cache writes to main memory later (when block is evicted) 



What about Stores? 

Where should you write the result of a store? 

• If that memory location is in the cache? 

– Send it to the cache 

– Should we also send it to memory right away? 

 (write-through policy) 

– Wait until we kick the block out (write-back policy) 

• If it is not in the cache? 

– Allocate the line (put it in the cache)? 

 (write allocate policy) 

– Write it directly to memory without allocation? 

 (no write allocate policy) 



Cache Performance 



Cache Performance 

Consider hit (H) and miss ratio (M) 

H x ATcache + M x (ATcache  + Atmemory) 

Hit rate = 1 – Miss rate 

Access Time is given in cycles 

Ratio of Access times, 1:50 

 

90%   :  1  + .1 x 50     = 6 

95%   :  1  + .05 x 50   = 3.5 

99%   :  1  + .01 x 50   = 1.5 

99.9%:  1 + .001 x 50 = 1.05 

= ATcache + M x ATmemory 



Cache Conscious Programming 



Cache Conscious Programming 

Every access is a cache miss! 

(unless entire matrix can fit in cache) 

 

// H = 12, NCOL = 10 

int A[NROW][NCOL]; 

 

for(col=0; col < NCOL; col++)  

 for(row=0; row < NROW; row++) 

 sum += A[row][col]; 

 

1 11 21 

2 12 22 

3 13 23 

4 14 24 

5 15 

25 

6 16 26 

7 17 … 

8 18 

9 19 

10 20 



Cache Conscious Programming 

Block size = 4  75% hit rate 

Block size = 8  87.5% hit rate 

Block size = 16  93.75%  hit rate 

And you can easily prefetch to warm the cache. 

// NROW = 12, NCOL = 10 

int A[NROW][NCOL]; 

 

for(row=0; row < NROW; row++) 

 for(col=0; col < NCOL; col++)  

 sum += A[row][col]; 

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 … 



MMU, Virtual Memory, Paging, and TLB’s 



Multiple Processes 

How to Run multiple processes? 

Time-multiplex a single CPU core (multi-tasking) 

• Web browser, skype, office, … all must co-exist 

 

Many cores per processor (multi-core) 
 or many processors (multi-processor) 

• Multiple programs run simultaneously 



Multiple Processes  

Q: What happens when another program is 
executed concurrently on another processor? 

 

 

 

 

 

A:  The addresses will conflict 

• Even though, CPUs may take  

 turns using memory bus 

CPU 

Text 

Data 

Stack 

Heap 

Memory 

CPU 

Text 

Data 

Stack 

Heap 

0x000…0 

0x7ff…f 

0xfff…f 



Virtual Memory 

Virtual Memory: A Solution for All Problems 

 

Each process has its own virtual address space 

• Programmer can code as if they own all of memory 

 

On-the-fly at runtime, for each memory access 

• all access is indirect through a virtual address 

• translate fake virtual address to a real physical 
address 

• redirect load/store to the physical address 



Virtual Memory Advantages 

Advantages 

Easy relocation 

• Loader puts code anywhere in physical memory 

• Creates virtual mappings to give illusion of correct 
layout 

Higher memory utilization 

• Provide illusion of contiguous memory 

• Use all physical memory, even physical address 0x0 

Easy sharing 

• Different mappings for different programs / cores 

Different Permissions bits 



Address Space 

Programs load/store to virtual addresses 

Actual memory uses physical addresses 

Memory Management Unit (MMU) 

• Responsible for translating on the fly 

• Essentially, just a big array of integers: 
 paddr = PageTable[vaddr]; 

CPU 

MMU 
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Z 
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CPU 

MMU 

0x1000 0x1000 

Virtual Address 
Space 

Physical Address Space 

Virtual Address 
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Attempt #1: Address Translation 

Attempt #1: For any access to virtual address: 

• Calculate virtual page number and page offset 

• Lookup physical page number at PageTable[vpn] 

• Calculate physical address as ppn:offset 

vaddr Page Offset Virtual page number 

Page offset Physical page number 

Lookup in PageTable 

paddr 

31                                                            12  11                       0 

                                                                 12  11                       0 

CPU 
generated 

Main  
Memory 

e.g. Page size 
4 kB = 212 



Beyond Flat Page Tables 
Assume most of PageTable is empty 

How to translate addresses?  

10 bits 

PTBR 

10 bits 10 bits vaddr 

PDEntry 

Page Directory 

Page Table 

PTEntry 
Page 

Word 

2 

Multi-level PageTable 

* x86 does exactly this 

4kB 

#entries =  pg sz/pte 
4kB / 4B =1024 PTEs 



Virtual Addressing with a Cache 

Thus it takes an extra memory access to 
translate a vaddr (VA) to a paddr (PA) 

CPU 
Trans- 

lation 
Cache 

Main 

Memory 

VA PA miss 

hit 

data 

• This makes memory (cache) accesses 

very expensive (if every access was really 

two accesses) 



A TLB in the Memory Hierarchy 

A TLB miss:  

• If the page is not in main memory, then it’s a true 
page fault 

– Takes 1,000,000’s of cycles to service a page fault 

TLB misses are much more frequent than true 
page faults 
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Virtual vs. Physical Caches 
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Cache works on physical addresses 

Cache works on virtual addresses 

Q: What happens on context switch? 
Q: What about virtual memory aliasing? 
Q: So what’s wrong with physically addressed caches? 



Indexing vs. Tagging 

Physically-Addressed Cache 
• slow: requires TLB (and maybe PageTable) lookup first 

Virtually-Indexed, Virtually Tagged Cache 
• fast: start TLB lookup before cache lookup finishes 

• PageTable changes (paging, context switch, etc.) 
  need to purge stale cache lines (how?) 

• Synonyms (two virtual mappings for one physical page) 
 could end up in cache twice (very bad!) 

Virtually-Indexed, Physically Tagged Cache 
• ~fast: TLB lookup in parallel with cache lookup 

• PageTable changes  no problem: phys. tag mismatch 

• Synonyms  search and evict lines with same phys. tag 

Virtually-Addressed Cache 



Indexing vs. Tagging 



Typical Cache Setup 

CPU 
L2 Cache 

SRAM 

 

Memory 

DRAM 

 

addr 

data 

MMU 

Typical L1: On-chip virtually addressed, physically tagged 

Typical L2: On-chip physically addressed 

Typical L3: On-chip …  

L1 Cache 

SRAM 
TLB SRAM 



Hardware/Software Boundary 



Hardware/Software Boundary 

Virtual to physical address translation is 
assisted by hardware? 

• Translation Lookaside Buffer (TLB) that caches 
the recent translations 

– TLB access time is part of the cache hit time 

– May allot an extra stage in the pipeline for TLB access 

• TLB miss 

– Can be in software (kernel handler) or hardware 



Hardware/Software Boundary 

Virtual to physical address translation is 
assisted by hardware? 

• Page table storage, fault detection and updating 

– Page faults result in interrupts (precise) that are then 
handled by the OS 

– Hardware must support (i.e., update appropriately) 
Dirty and Reference bits (e.g., ~LRU) in the Page Tables 





Paging 



Traps, exceptions, and operating system 



Operating System 
Some things not available to untrusted programs: 

• Exception registers, HALT instruction, MMU 
instructions, talk to I/O devices, OS memory, ... 

Need trusted mediator: Operating System (OS) 

• Safe control transfer 

• Data isolation 

P1 P2 P3 P4 

VM filesystem net 

driver driver 

disk eth MMU 



Terminology 

Trap: Any kind of a control transfer to the OS 

 

Syscall: Synchronous (planned), program-to-kernel transfer 

• SYSCALL instruction in MIPS (various on x86) 

 

Exception: Synchronous, program-to-kernel transfer 

• exceptional events: div by zero, page fault, page protection err, 
… 

 

Interrupt: Aysnchronous, device-initiated transfer 

• e.g. Network packet arrived, keyboard event, timer ticks 

* real mechanisms, but nobody agrees on these terms 



Multicore and Synchronization 



Multi-core is a reality… 

 

… but how do we write multi-core safe code? 



Why Multicore? 

Moore’s law 

• A law about transistors 

(Not speed) 

• Smaller means faster 

    transistors 

 

 

Power consumption growing with transistors 

 





Power Trends 

In CMOS IC technology 

FrequencyVoltageload CapacitivePower 2 

×1000 ×30 5V → 1V 



Uniprocessor Performance 

Constrained by power, instruction-level 

parallelism, memory latency 



Why Multicore? 

Moore’s law 

• A law about transistors 

• Smaller means faster transistors 

 

Power consumption growing with transistors 

 

The power wall 

• We can’t reduce voltage further 

• We can’t remove more heat 

How else can we improve performance? 



Why Multicore?  

Power 
1.0x 

1.0x 

Performance 
Single-Core 

Power 
1.2x 

1.7x 

Performance Single-Core 
Overclocked +20% 

Power 
0.8x 

0.51x 

Performance Single-Core 
Underclocked -20% 

1.6x 

1.02x 

Dual-Core 
Underclocked -20% 



Amdahl’s Law 

Task: serial part, parallel part 

As number of processors increases,  

• time to execute parallel part goes to zero 

• time to execute serial part remains the same 

Serial part eventually dominates 

Must parallelize ALL parts of task 



Amdahl’s Law 

Consider an improvement E 

F of the execution time is affected 

S is the speedup 



Multithreaded Processes 



Shared counters 

Usual result: works fine. 

Possible result: lost update!    

 

 

 

 

 

 

 

 

 

 

 

Occasional timing-dependent failure  Difficult to debug 

Called a race condition 

hits = 0 + 1 

read hits (0) 

hits = 0 + 1 
read hits (0) 

T1 T2 

hits = 1 

hits = 0 

time 



Race conditions 

Def: a timing dependent error involving shared state  
• Whether it happens depends on how threads scheduled: 

who wins “races” to instructions that update state 

• Races are intermittent, may occur rarely 
– Timing dependent = small changes can hide bug 

• A program is correct only if all possible schedules are safe   
– Number of possible schedule permutations is huge 

– Need to imagine an adversary who switches contexts at the 
worst possible time 

 



Critical Sections 

Basic way to eliminate races: use critical sections 
that only one thread can be in 

• Contending threads must wait to enter 

CSEnter(); 
Critical section 

CSExit(); 

T1 T2 
time 

CSEnter(); 
Critical section 

CSExit(); 

T1 T2 



Mutexes 

Critical sections typically associated with mutual 
exclusion locks (mutexes) 

Only one thread can hold a given mutex at a time 

Acquire (lock) mutex on entry to critical section 
• Or block if another thread already holds it 

Release (unlock) mutex on exit 
• Allow one waiting thread (if any) to acquire & proceed 

pthread_mutex_lock(m); 

hits = hits+1; 

pthread_mutex_unlock(m); 

T1 T2 

pthread_mutex_lock(m); 

hits = hits+1; 

pthread_mutex_unlock(m); 

pthread_mutex_init(m); 



Protecting an invariant 

// invariant: data is in buffer[head..tail-1]. Protected by m. 

pthread_mutex_t *m; 

char buffer[1000]; 

int head = 0, tail = 0; 

 

void put(char c) { 

 pthread_mutex_lock(m); 

 buffer[tail] = c; 

 tail = (tail + 1) % n; 

 pthread_mutex_unlock(m); 

} 

 

• Rule of thumb: all updates that can affect 

  invariant become critical sections. 

char get() { 

 pthread_mutex_lock(m);  

 char c = buffer[head]; 

 head = (head + 1) % n; 

 pthread_mutex_unlock(m); 

} 
X what if first==last? 



See you Tonight 
Good Luck! 


