RISC, CISC, and Assemblers

Hakim Weatherspoon
CS 3410, Spring 2013
Computer Science
Cornell University

See P&H Appendix B.1-2, and Chapters 2.8 and 2.12; als 2.16 and 2.17

Big Picture: Where are we how?

compute
jump/branch
targets
memory M register A
N file
A (an]
-. 0)
E’ Tyrrt addr
F;\C -1 & control din, dowt HSF
memor
\{ \—> extend S Y
® .g T
Instruction >l T =T =T Write-
Fetch Decode :>> © Execute :>> © Memory :; ©l Back

IF/ID ID/EX EX/MEM MEM/WB

Big Picture: Where are we going?

¢ int x = 10;
compiler = 2 * x + 15;
MIPS | 0=0
bl addi r5, ro, 10 <—r>=r0+10
assembly lmy1i r5, rs5, 2 (5 = r5<<1 #r5 = r5 * 2
assembler/l@ddi r5, r5, 15 < r5=r15+ 15
= i 10
machine [gp100de0e0oba101Re0R0eR0RRR101¢0
code 00000000000P0101190101000011000000
00101D010109k

Circuits

e

Gates

< -

Transistors

- =

Silicon

Goals for Today

Instruction Set Architectures
e |SA Variations (i.e. ARM), CISC, RISC

(Intuition for) Assemblers

*Translate symbolic instructions to binary machine code

Time for Prelim1 Questions

Next Time

e Program Structure and Calling Conventions

Next Goal

Is MIPS the only possible instruction set
architecture (ISA)?

What are the alternatives?

MIPS Design Principles

Simplicity favors regularity
e 32 bit instructions

Smaller is faster
 Small register file

Make the common case fast
e Include support for constants

Good design demands good compromises
e Support for different type of interpretations/classes

What happens when the common case is slow?
e Can we add some complexity in the ISA for a speedup?

ISA Variations: Conditional Instructions

e while(i !=j){
. if (i>])
. = js In MIPS, performance will be
. else slow if code has a lot of branches
y J-=1
* }
Loop: BEQ Ri, Rj, End // if "NE" (not equal), then stay in loop
SLT Rd, Rj, Ri /] "GT"if (i >]),
BNE Rd, RO, Else // ..
SUB Ri, Ri, Rj /[if "GT" (greater than), i = i-j;
J Loop
Else: SUB Rj, Rj, Ri // or "LT" if (i <)
J Loop [/ if "LT" (less than), j = j-i;

End:

ISA Variations: Conditional Instructions

e while(i !'=j){

. if (i >)

. = In ARM, can avoid delay due to
’ Branches with conditional

’ else Instructions

. J-=1;

. !

0
LOOP: CMP Ri, Rj |=[zI<[>// set condition "NE" if (i !=j)
/] "GTif (i >),
[/ or "LT" if (i <)

000 1

—IFEIPISUBGT Ri, Ri, Rj // if "GT" (greater than), i = i-j
=[#[<[>) SUBLE Rj, Rj, Ri // if "LE" (less than or equal), j = j-i;
2 ;2 S BNE loop // if "NE" (not equal), then loop

ARM: Other Cool operations

Shift one register (e.g. Rc) any amount
Add to another register (e.g. Rb)
Store result in a different register (e.g. Ra)

ADD Ra, Rb, Rc LSL #4
Ra = Rb + Rc<<4
Ra=Rb+Rcx16

MIPS instruction formats

All MIPS instructions are 32 bits long, has 3 formats

R-type op rs rt rd shamt func
6 bits 5bits 5bits 5bits 5bits 6 bits

I-type op rs rt immediate
6 bits 5 bits 5 bits 16 bits
I I
J-type op 1immediate (target address)

6 bits 26 bits

ARM instruction formats

All ARM instructions are 32 bits long, has 3 formats

R-type op rs rd opx rt

4 bits 8 bits 4 bits 4 bits 8 bits 4 bits

I-type op rs rd immediate

4 bits 8 bits 4 bits 4 bits 12 bits

[type op immediate (target address)

4 bits 4 bits 24 bits

Instruction Set Architecture

ISA defines the permissible instructions

e MIPS: load/store, arithmetic, control flow, ...

e ARM: similar to MIPS, but more shift, memory, & conditional
ops

e VAX: arithmetic on memory or registers, strings, polynomial
evaluation, stacks/queues, ...

* Cray: vector operations, ...
e x86: a little of everything

ARM Instruction Set Architecture

All ARM instructions are 32 bits long, has 3 formats
Reduced Instruction Set Computer (RISC) properties

e Only Load/Store instructions access memory

* |Instructions operate on operands in processor registers
16 registers

Complex Instruction Set Computer (CISC) properties

* Autoincrement, autodecrement, PC-relative addressing
e Conditional execution

 Multiple words can be accessed from memory with a
single instruction (SIMD: single instr multiple data)

Takeaway

We can reduce the number of instructions to
execute a program and possibly increase
performance by adding complexity to the ISA.

Next Goal

How much complexity to add to an ISA?
How does the CISC philosophy compare to RISC?

Complex Instruction Set Computers (CISC)

People programmed in assembly and machine code!
e Needed as many addressing modes as possible
e Memory was (and still is) slow

CPUs had relatively few registers
e Register’s were more “expensive” than external mem
 Large number of registers requires many bits to index

Memories were small
 Encoraged highly encoded microcodes as instructions
e Variable length instructions, load/store, conditions, etc

Reduced Instruction Set Computer

Dave Patterson John L. Hennessy

 RISC Project, 1982 e MIPS, 1981

e UC Berkeley e Stanford

e RISC-I: % transistors & 3x Simple pipelining, keep full

faster o

e |nfluences: Sun SPARC,
namesake of industry

Influences: MIPS computer
system, PlayStation, Nintendo

Reduced Instruction Set Computer

John Cock
e |BM 801, 1980 (started in 1975)
e Name 801 came from the bldg that housed the project
 |dea: Possible to make a very small and very fast core

e Influences: Known as “the father of RISC
Architecture”. Turing Award Recipient and National
Medal of Science.

Complexity

MIPS = Reduced Instruction Set Computer (RISC)

e =200 instructions, 32 bits each, 3 formats

e all operands in registers
— almost all are 32 bits each

e =1 addressing mode: Mem[reg + imm]

x86 = Complex Instruction Set Computer (CISC)
e > 1000 instructions, 1 to 15 bytes each

e operands in dedicated registers, general purpose
registers, memory, on stack, ...

— can be 1, 2, 4, 8 bytes, signed or unsigned
e 10s of addressing modes
— e.g. Mem[segment + reg + reg*scale + offset]

RISC vs CISC

RISC Philosophy CISC Rebuttal

Regularity & simplicity Compilers can be smart

_eaner means faster Transistors are plentiful

Optimize the Legacy is important

common case Code size counts
Micro-code!

Energy efficiency Desktops/Servers

Embedded Systems
Phones/Tablets

ARMDroid vs WinTel

 Android OS on e Windows OS on
ARM processor Intel (x86) processor

Takeaway

We can reduce the number of instructions to
execute a program and possibly increase
performance by adding complexity to the ISA.

Back in the day... CISC was necessary because
everybody programmed in assembly and machine
code! Today, CISC ISA’s are still dominate today
due to the prevalence of x86 ISA processors.
However, RISC ISA’s today such as ARM have an
ever increase marketshare (of our everyday life!).

ARM borrows a bit from both RISC and CISC.

Goals for Today

Instruction Set Architectures
e |SA Variations (i.e. ARM), CISC, RISC

(Intuition for) Assemblers

*Translate symbolic instructions to binary machine code

Time for Prelim1 Questions

Next Time

e Program Structure and Calling Conventions

Next Goal

How do we (as humans or compiler) program on
top of a given ISA?

Big Picture: Where are we going?

¢ int x = 10;
compiler = 2 * x + 15;
MIPS | 0=0
bl addi r5, ro, 10 <—r>=r0+10
assembly lmy1i r5, rs5, 2 (5 = r5<<1 #r5 = r5 * 2
assembler/l@ddi r5, r5, 15 < r5=r15+ 15
= i 10
machine [gp100de0e0oba101Re0R0eR0RRR101¢0
code 00000000000P0101190101000011000000
00101D010109k

Circuits

e

Gates

< -

Transistors

- =

Silicon

25

Assembler

Translates text assembly language to binary
machine code

Input: a text file containing MIPS instructions in

human readable form addi r5, ro, 10
muli r5, r5, 2
addi r5, r5, 15

Output: an object file (.o file in Unix, .obj in
Windows) containing MIPS instructions in

executable form |00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

bler

Assem
:calc.c \%r calc.sp
/
:math c:%:math SH
: 10.S \
Compiler
Assembler

\ialc.o
)

%ath.o

\.

/

yio.o 7

\[aIc.exe]

linker

Assembler

Translates text assembly language to binary
machine code

Input: a text file containing MIPS instructions in

human readable form addi r5, ro, 10
muli r5, r5, 2
addi r5, r5, 15

Output: an object file (.o file in Unix, .obj in
Windows) containing MIPS instructions in

executable form |00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

Assembly Language

Assembly language is used to specify programs at a
low-level

Will | program in assembly
A:1do...

For CS 3410 (and some CS 4410/4411)

For kernel hacking, device drivers, GPU, etc.

For performance (but compilers are getting better)
For highly time critical sections

For hardware without high level languages

For new & advanced instructions: rdtsc, debug
registers, performance counters, synchronization, ...

Assembly Language

Assembly language is used to specify programs
at a low-level

What does a program consist of?
* MIPS instructions

* Program data (strings, variables, etc)

Assembler

Assembler:
assembly instructions
+ psuedo-instructions
+ data and layout directives
= executable program

Slightly higher level than plain assembly
e.g: takes care of delay slots
(will reorder instructions or insert nops)

MIPS Assembly Language Instructions

Arithmetic/Logical
 ADD, ADDU, SUB, SUBU, AND, OR, XOR, NOR, SLT, SLTU

 ADDI, ADDIU, ANDI, ORI, XORI, LUI, SLL, SRL, SLLV, SRLV, SRAV,
SLTI, SLTIU

* MULT, DIV, MFLO, MTLO, MFHI, MTHI
Memory Access

e LW, LH, LB, LHU, LBU, LWL, LWR

e SW, SH, SB, SWL, SWR

Control flow
e BEQ, BNE, BLEZ, BLTZ, BGEZ, BGTZ
 J, IR, JAL, JALR, BEQL, BNEL, BLEZL, BGTZL

Special
e LL, SC, SYSCALL, BREAK, SYNC, COPROC

Pseudo-Instructions

Pseudo-Instructions

NOP # do nothing
e SLLrO, rO, O

MOVE reg, reg # copy between regs
e ADD R2, RO, R1 # copies contents of R1 to R2

LI reg, imm # load immediate (up to 32 bits)
LA reg, label # load address (32 bits)
B label # unconditional branch

BLT reg, reg, label # branch less than
e SILTrl, rA, rB#rl1=1if R[rA] <R[rB]; o.w.r1=0
e BNE rl, rO, label # go to address label if r1!=r0; i.t. rA<rB

Program Layout

Programs consist of segments

used for different purposes

e Text: holds instructions “cornell cs”
e Data: holds statically allocated data |

25
program data such as

variables, strings, etc.

add r1,r2,r3
orir2, r4, 3

text

Assembling Programs

Assembly files consist of a mix of

+ instructions

+ pseudo-instr@

(+ assembler (c ata/layout) directives)

.ent main
main: la $4, Larray

li 4.0 (Assembler lays out binary values
jal exit

_In memory based on directives)

Assembled to an Object File

e Header
Larray: e Text Segment
Jlong 51, 491, 3991 Data Segment

e Relocation Information
e Symbol Table
* Debugging Information

Assembling Programs

Assembly with a but using (modified) Harvard
architecture

* Need segments since data and program stored
together in memory

Registers 00100000001
00100000010
00010000100
\ ALU / data, address,
control
€ >
Data
CPU 10100010000 Memory
10110000011
00100010101
Program
Memory

Takeaway

Assembly is a low-level task

 Need to assemble assembly language into machine
code binary. Requires

 Assembly language instructions
e pseudo-instructions
* And Specify layout and data using assembler directives

e Since we use a modified Harvard Architecture (Von
Neumann architecture) that mixes data and
Instructions in memory

... but best kept in separate segments

Next time

How do we coordinate use of registers?
Calling Conventions!

PA1 due Monday

Administrivia

Preliml: Today, Tuesday, February 26" in evening

 Location: GSHG76: Goldwin Smith Hall room G76
e Time: We will start at 7:30pm sharp, so come early

 Closed Book: NO NOTES, BOOK, CALCULATOR, CELL PHONE

e Cannot use electronic device or outside material
e Practice prelims are online in CMS

e Material covered everything up to end of last week
e Appendix C (logic, gates, FSMs, memory, ALUs)
e Chapter 4 (pipelined [and non-pipeline] MIPS processor with hazards)
e Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
e Chapter 1 (Performance)
e HW1, HW2, Lab0, Lab1l, Lab2

Administrivia

Projectl (PA1) due next Monday, March 4th

e Continue working diligently. Use design doc momentum

Save your work!

e Save often. Verify file is non-zero. Periodically save to Dropbox,
email.

e Beware of MacOSX 10.5 (leopard) and 10.6 (snow-leopard)

Use your resources

e Lab Section, Piazza.com, Office Hours, Homework Help Session,
e Class notes, book, Sections, CSUGLab

