What does the Future Hold?

Hakim Weatherspoon
CS 3410, Spring 2012
Computer Science
Cornell University
Announcements

Prelim3 Results

• Mean 62.2 ± 15.5 (median 64.5), Max 97
• Pickup in Homework Passback Room
Announcements

How to improve your grade?

Submit a course evaluation and drop lowest homework score

• To receive credit, Submit before Monday, May 7th
FlameWar Pizza Party was great!

- Winner: Team **MakeTotalDestroy**

Kenny Deakins and Luis Ruigomez
Announcements

Final Project
Design Doc sign-up via CMS
 sign up Sunday, Monday, or Tuesday
 May 6th, 7th, or 8th
Demo Sign-Up via CMS.
 sign up Tuesday, May 15th
 or Wednesday, May 16th
CMS submission due:
 • Due 6:30pm Wednesday, May 16th
Big Picture about the Future
Big Picture

How a processor works? How a computer is organized?
What’s next?

More of Moore
Moore’s Law

Moore’s Law introduced in 1965

- Number of transistors that can be integrated on a single die would double every 18 to 24 months (i.e., grow exponentially with time).

Amazingly visionary

- 2300 transistors, 1 MHz clock (Intel 4004) - 1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001
- 55 Million transistors, 3 GHz, 130nm technology, 250mm2 die (Intel Pentium 4) – 2004
- 290+ Million transistors, 3 GHz (Intel Core 2 Duo) – 2007
- 731 Million transistors, 2-3Ghz (Intel Nehalem) – 2009
- 1.17 Billion transistors, 2-3Ghz (Intel Westmere) – 2011
10

Processor Performance Increase

100

1000

10000

1987 1989 1991 1993 1995 1997 1999 2001 2003

Performance (SPEC Int)

Year

SUN

‐

4/260

MIPS

M/120

MIPS

M2000

IBM

RS6000

HP

9000/750

DEC

AXP/500

IBM

POWER

Intel

Xeon/2000

Intel

Pentium

4/3000

Slope

~1.7x/year

Curve shows Moore’s Law: transistor count doubling every two years.

Transistor count

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,000,000,000

1971

1980

1990

2000

2008
Power Limits

- Surface of Sun
- Rocket Nozzle
- Nuclear Reactor
- Hot Plate

Watts/cm²

10000
1000
100
10
1

1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ

Pentium III ® processor
Pentium II ® processor
Pentium Pro ® processor
Pentium ® processor

Xeon
What to do with all these transistors?

Multi-core
The first transistor
- on a workbench at AT&T Bell Labs in 1947
- Bardeen, Brattain, and Shockley

An Intel Westmere
- 1.17 billion transistors
- 240 square millimeters
- Six processing cores

http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/
What to do with all these transistors?

Many-core
and Graphical Processing units
Faster than Moore’s Law
One-pixel polygons (~10M polygons @ 30Hz)

Slope ~2.4x/year
(Moore's Law ~ 1.7x/year)

Graph courtesy of Professor John Poulton (from Eric Haines)
AMDS Hybrid CPU/GPU
AMD’s Answer: Hybrid CPU/GPU
IBM/Sony/Toshiba

Sony Playstation 3

PPE

SPEs (synergistic)
Parallelism

Must exploit parallelism for performance
- Lots of parallelism in graphics applications
- Lots of parallelism in scientific computing

SIMD: single instruction, multiple data
- Perform same operation in parallel on many data items
- Data parallelism

MIMD: multiple instruction, multiple data
- Run separate programs in parallel (on different data)
- Task parallelism
NVidia Tesla Architecture
FIGURE A.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor. Programmable shader stages are blue, fixed-function blocks are white, and memory objects are grey. Each stage processes a vertex, geometric primitive, or pixel in a streaming dataflow fashion. Copyright © 2009 Elsevier, Inc. All rights reserved.

Why are GPUs so fast?

Pipelined and parallel

Very, very parallel: 128 to 1000 cores
FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.
General computing with GPUs

Can we use these for general computation?

Scientific Computing
 • MATLAB codes

Convex hulls

Molecular Dynamics

Etc.

NVIDIA’s answer:
 Compute Unified Device Architecture (CUDA)
 • MATLAB/Fortran/etc. → “C for CUDA” → GPU Codes
What to do with all these transistors?

Cloud Computing
Cloud Computing

Datacenters are becoming a commodity
Order online and have it delivered

• Datacenter in a box: already set up with commodity hardware & software (Intel, Linux, petabyte of storage)

• Plug data, power & cooling and turn on
 – typically connected via optical fiber

 such datacenters
Cloud Computing = Network of Datacenters
Cloud Computing

Enable datacenters to coordinate over vast distances

- Optimize availability, disaster tolerance, energy
- Without sacrificing performance
- “cloud computing”

Drive underlying technological innovations.
Vision

Cloud Computing

The promise of the Cloud

- A computer utility; a commodity
- Catalyst for technology economy
- Revolutionizing for health care, financial systems, scientific research, and society

However, cloud platforms today

- Entail significant risk: vendor lock-in vs control
- Entail inefficient processes: energy vs performance
- Entail poor communication: fiber optics vs COTS endpoints
Example: Energy and Performance

Why don’t we save more energy in the cloud?

No one deletes data anymore!
• Huge amounts of seldom-accessed data

Data deluge
• Google (YouTube, Picasa, Gmail, Docs), Facebook, Flickr
• 100 GB per second is faster than hard disk capacity growth!
• Max amount of data accessible at one time << Total data

New scalable approach needed to store this data
• Energy footprint proportional to number of HDDs is not sustainable
What to do with all these transistors?

Embedded Processors
Where is the Market?

![Bar chart showing the number of millions of computers for Embedded Desktop Servers from 1998 to 2002. The chart indicates a steady increase in numbers over the years, with the highest value in 2002 at 1122 million.](chart.png)
Where is the Market?

Where is the Market?

- Cell Phones
- PCs
- TVs

Millions of Computers

Year	Cell Phones	PCs	TVs
1997 | 11093 | 114 | 135 |
1999 | 295 | 114 | 136 |
2001 | 405 | 135 | 136 |
2003 | 502 | 135 | 202 |
2005 | 785 | 202 | 265 |
2007 | 1182 | 265 | 200 |
Where to?
Security?

Cryptography and security...

TPM 1.2

IBM 4758 Secure Cryptoprocessor
Security?

Stack Smashing...

Before

- buffer[1024]
- ret address of CalcAverage()
- ...
- rest of the stack
- ...

After

- "Success ;)
- nothing meaningful here
- address of printf
- return address of main()
- address of buffer[0]
- ...
- rest of the stack
- ...
What to do with all these transistors?

You could save the world one day?
Alan Turing’s Bombe
Used to crack Germany’s enigma machine

ENIAC - 1946
First general purpose electronic computer. Designed to calculate ballistic trajectories
Survey Questions

Are you a better computer scientist and software engineering knowing “the low-level stuff”?

How much of computer architecture do software engineers actually have to deal with?

What are the most important aspects of computer architecture that a software engineer should keep in mind while programming?
Why?

These days, programs run on hardware...

... more than ever before

Google Chrome

→ Operating Systems

→ Multi-Core & Hyper-Threading

→ Datapath Pipelines, Caches, MMUs, I/O & DMA

→ Busses, Logic, & State machines

→ Gates

→ Transistors

→ Silicon

→ Electrons
Why?

Your job as a computer scientist will require knowledge the computer

Research/University

Industry

Government
Where to?

CS 3110: Better concurrent programming

CS 4410/4411: The Operating System!

CS 4420/ECE 4750: Computer Architecture

CS 4450: Networking

CS 4620: Graphics

CS 4821: Quantum Computing

MEng

5412—Cloud Computing, 5414—Distr Computing,
5430—Systems Security,
5300—Arch of Large scale Info Systems

And many more...
Thank you!

If you want to make an apple pie from scratch, you must first create the universe.

– Carl Sagan