
Synchronization

P&H Chapter 2.11

Han Wang
CS 3410, Spring 2012

Computer Science
Cornell University

2

Shared Memory Multiprocessors

Shared Memory Multiprocessor (SMP)

• Typical (today): 2 – 4 processor dies, 2 – 8 cores each

• Assume physical addresses (ignore virtual memory)

• Assume uniform memory access (ignore NUMA)

Core0 Core1 CoreN

Cache Cache Cache

Memory I/O

Interconnect

...

3

Fo

Synchronization

The need for synchronization arises whenever

there are concurrent processes in a system.

 (even in a uni-processor system)

Fork

P1 P2

Join

Producer

Consumer

Forks and Joins: In parallel programming,
a parallel process may want to wait until
several events have occurred.

Producer-Consumer: A consumer process
must wait until the producer process has
produced data

Exclusive use of a resource: Operating
system has to ensure that only one
process uses a resource at a given time

4

Processes and Threads

Process

OS abstraction of a running
computation

• The unit of execution

• The unit of scheduling

• Execution state
+ address space

From process perspective

• a virtual CPU

• some virtual memory

• a virtual keyboard, screen, …

Thread

OS abstraction of a single
thread of control

• The unit of scheduling

• Lives in one single process

From thread perspective

• one virtual CPU core on a
virtual multi-core machine

All you need to know about OS (for today)

Thread is much more lightweight.

5

Thread A Thread B
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {
 x = x + 1; x = x + 1;
} }

6

Thread A Thread B
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {
 LW $t0, addr(x) LW $t0, addr(x)
 ADDI $t0, $t0, 1 ADDI $t0, $t0, 1
 SW $t0, addr(x) SW $t0, addr(x)
} }

7

Possible interleaves:

8

Atomic operation

To understand concurrent processes, we need to
understand the underlying indivisible operations.

Atomic operation: an operation that always runs to the
end or not at all.

• Indivisible. Its can not be stopped in the middle.
• Fundamental building blocks.
• Execution of a single instruction is atomic.
Examples:
• Atomic exchange.
• Atomic compare and swap.
• Atomic fetch and increment.
• Atomic memory operation.

9

Agenda

- Why cache coherency is not sufficient?

- HW support for synchronization

- Locks + barriers

10

Cache Coherence Problem

Shared Memory Multiprocessor (SMP)

What could possibly go wrong?

...
x = x+1
...

...
while (x==5) {
 // wait
}
...

Core0 Core1 Core3

I/O

Interconnect

...

11

Coherence Defined

Cache coherence defined...

Informal: Reads return most recently written value

Formal: For concurrent processes P1 and P2

• P writes X before P reads X (with no intervening writes)
 read returns written value

• P1 writes X before P2 reads X
 read returns written value

• P1 writes X and P2 writes X
 all processors see writes in the same order

– all see the same final value for X

12

Snooping

Recall: Snooping for Hardware Cache Coherence

• All caches monitor bus and all other caches

• Bus read: respond if you have dirty data

• Bus write: update/invalidate your copy of data

Core0

Cache

Memory I/O

Interconnect

Core1

Cache

CoreN

Cache

...

13

Is cache coherence sufficient?

Example with cache coherence:

P1 P2

x = x +1 while (x==5) ;

14

Is cache coherence sufficient?

Example with cache coherence:

P1 P2

x = x +1 x = x + 1

15

Hardware Primitive: Test and Set

Test-and-set is a typical way to achieve synchronization when only
one processor is allowed to access a critical section.

Hardware atomic equivalent of…
int test_and_set(int *m) {

 old = *m;

 *m = 1;

 return old;

}

• If return value is 0, then you succeeded in acquiring the test-and-set.
• If return value is non-0, then you did not succeed.
• How do you "unlock" a test-and-set?

 Test-and-set on Intel:
 xchg dest, src
• Exchanges destination and source.
• How do you use it?

16

Using test-and-set for mutual exclusion

Use test-and-set to implement mutex / spinlock / crit. sec.

int m = 0;

...

while (test_and_set(&m)) { /* skip */ };

m = 0;

17

Snoop Storm

mutex acquire: mutex release:

 LOCK BTS var, 0 MOV var, 0

 JC mutex acquire

• mutex acquire is very tight loop
• Every iteration stores to shared memory location
• Each waiting processor needs var in E/M each iteration

18

Test and test and set

mutex acquire: mutex release:

 TEST var, 1 MOV var, 0

 JNZ mutex acquire

 LOCK BTS var, 0

 JC mutex acquire

• Most of wait is in top loop with no store
• All waiting processors can have var in $ in top loop
• Top loop executes completely in cache
• Substantially reduces snoop traffic on bus

19

Hardware Primitive: LL & SC

• LL: load link (sticky load) returns the value in a memory location.

• SC: store conditional: stores a value to the memory location ONLY
if that location hasn’t changed since the last load-link.

• If update has occurred, store-conditional will fail.

• LL rt, immed(rs) (“load linked”) — rt ← Memory[rs+immed]

• SC rt, immed(rs) (“store conditional”) —

 if no writes to Memory[rs+immed] since ll:

 Memory[rs+immed] ← rt; rt ← 1

 otherwise:

 rt ← 0

• MIPS, ARM, PowerPC, Alpha has this support.

• Each instruction needs two register.

20

Operation of LL & SC.

try: mov R3, R4 ;mov exchange value

 ll R2, 0(R1) ;load linked

 sc R3, 0(R1) ;store conditional

 beqz R3, try ;branch store fails

 mov R4, R2 ;put load value in R4

Any time a processor intervenes and modifies the value
in memory between the ll and sc instruction, the sc
returns 0 in R3, causing the code to try again.

21

mutex from LL and SC

fmutex_lock(int *m) {

again:

 LL t0, 0(a0)

 BNE t0, zero, again

 ADDI t0, t0, 1

 SC t0, 0(a0)

 BEQ t0, zero, again

}

Linked load / Store Conditional

22

More example on LL & SC

 try: ll R2, 0(R1) ;load linked

 addi R3, R2, #1

 sc R3, 0(R1) ;store condi

 beqz R3, try ;branch store fails

This has a name!

23

Hardware Primitive: CAS

• Compare and Swap

• Compares the contents of a memory location with a value and if
they are the same, then modifies the memory location to a new
value.

• CAS on Intel:
 cmpxchg loc, val

• Compare value stored at memory location loc to contents of the
Compare Value Application Register.

• If they are the same, then set loc to val.

• ZF flag is set if the compare was true, else ZF is 0

• X86 has this support, needs three registers (address, old value,
new value). CISC instruction.

24

Alternative Atomic Instructions

Other atomic hardware primitives

 - test and set (x86)

 - atomic increment (x86)

 - bus lock prefix (x86)

 - compare and exchange (x86, ARM deprecated)

 - linked load / store conditional
(MIPS, ARM, PowerPC, DEC Alpha, …)

25

Spin waiting

Also called: spinlock, busy waiting, spin waiting, …

• Efficient if wait is short

• Wasteful if wait is long

Possible heuristic:

• spin for time proportional to expected wait time

• If time runs out, context-switch to some other thread

26

Read lock

 variable

Succeed?

 (=0?)

Try to lock variable using ll&sc:

 read lock variable and set it

 to locked value (1)

Unlocked?

 (=0?)

No

Yes

No Begin update of

shared data

Finish update of

shared data

Yes

.

.

.

 unlock variable:

set lock variable

to 0

Spin

atomic

operation

The single winning processor will read a 0 -

all others processors will read the 1 set by

the winning processor

Spin Lock

27

Example

 _itmask # enter critical section

lock acquisition loop

 LL r1, 0(r4) # r1 <= M[r4]

 BNEZ r1, loop # retry if lock

 already taken (r1 != 0)

 ORI r1, r0, 1 # r1 <= 1

 SC r1, 0(r4) # if atomic (M[r4] <= 1 /

 r1 <= 1) else (r1 <= 0)

 BEQZ r1, loop # retry if not atomic (r1

 == 0) ...

lock release

 ORI r1, r0, 0 # r1 <= 0

 SW r1, 0(r4) # M[r4] <= 0

 _itunmask # exit critical section

28

How do we fix this?

Thread A Thread B
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

 x = x + 1; x = x + 1;

 } }

acquire_lock(m); acquire_lock(m);

release_lock(m); release_lock(m);

29

30

Guidelines for successful mutexing

Insufficient locking can cause races

• Skimping on mutexes? Just say no!

Poorly designed locking can cause deadlock

• know why you are using mutexes!

• acquire locks in a consistent order to avoid cycles

• use lock/unlock like braces (match them lexically)

– lock(&m); …; unlock(&m)

– watch out for return, goto, and function calls!

– watch out for exception/error conditions!

P1: lock(m1);
 lock(m2);

P2: lock(m2);
 lock(m1);

31

Summing Numbers on a SMP
sum[Pn] = 0;

for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1)

 sum[Pn] = sum[Pn] + A[i];

 /* each processor sums its

 /* subset of vector A

repeat /* adding together the

 /* partial sums

 synch(); /*synchronize first

 if (half%2 != 0 && Pn == 0)

 sum[0] = sum[0] + sum[half-1];

 half = half/2

 if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1); /*final sum in sum[0]

 A[i];

 /* each processor sums its

 /* subset of vector A

32

Barrier Synchronization

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 P1 P2 P3 P4

P0 P1

P0

33

Simple Barrier Synchronization

lock();

if(count==0) release=FALSE; /* First resets release */

count++; /* Count arrivals */

unlock();

if(count==total) /* All arrived */

{

 count=0; /* Reset counter */

 release = TRUE; /* Release processes */

}

else /* Wait for more to come */

{

 while (!release); /* Wait for release */

}

Problem: deadlock possible if reused
• Two processes: fast and slow
• Slow arrives first, reads release, sees FALSE
• Fast arrives, sets release to TRUE, goes on to execute other code,

comes to barrier again, resets release to FALSE, starts spinning on wait for release
• Slow now reads release again, sees FALSE again
• Now both processors are stuck and will never leave

34

35

Correct Barrier Synchronization

localSense=!localSense; /* Toggle local sense */

lock();

 count++; /* Count arrivals */

 if(count==total){ /* All arrived */

 count=0; /* Reset counter */

 release=localSense; /* Release processes */

 }

unlock();

while(release==localSense); /* Wait to be released */

Release in first barrier acts as reset for second
• When fast comes back it does not change release,

it just waits for it to become FALSE

• Slow eventually sees release is TRUE, stops waiting,
does work, comes back, sets release to FALSE, and both go forward.

initially localSense = True, release = FALSE

36

37

Large-Scale Systems: Barriers

Barrier with many processors
• Have to update counter one by one – takes a long time
• Solution: use a combining tree of barriers

– Example: using a binary tree
– Pair up processors, each pair has its own barrier

• E.g. at level 1 processors 0 and 1 synchronize on one
barrier, processors 2 and 3 on another, etc.

– At next level, pair up pairs
• Processors 0 and 2 increment a count a level 2,

processors 1 and 3 just wait for it to be released
• At level 3, 0 and 4 increment counter, while 1, 2, 3, 5, 6,

and 7 just spin until this level 3 barrier is released
• At the highest level all processes will spin and a few

“representatives” will be counted.
– Works well because each level fast and few levels

• Only 2 increments per level, log2(numProc) levels
• For large numProc, 2*log2(numProc) still reasonably small

38

Beyond Mutexes

Lanaguage-level synchronization

• Conditional variables

• Monitors

• Semaphores

39

Software Support for
Synchronization and Coordination:

Programs and Processes

40

Processes

How do we cope with lots of activity?

Simplicity? Separation into processes

Reliability? Isolation

Speed? Program-level parallelism

gcc emacs nfsd

lpr
ls www

emacs

nfsd lpr

ls www OS

OS

41

Process and Program

Process

OS abstraction of a running
computation

• The unit of execution

• The unit of scheduling

• Execution state
+ address space

From process perspective

• a virtual CPU

• some virtual memory

• a virtual keyboard, screen, …

Program

“Blueprint” for a process

• Passive entity (bits on disk)

• Code + static data

42

Role of the OS

Role of the OS

Context Switching

• Provides illusion that every process owns a CPU

Virtual Memory

• Provides illusion that process owns some memory

Device drivers & system calls

• Provides illusion that process owns a keyboard, …

To do:

 How to start a process?

 How do processes communicate / coordinate?

43

Role of the OS

44

Creating Processes:

Fork

45

How to create a process?

Q: How to create a process?

A: Double click

After boot, OS starts the first process

…which in turn creates other processes

• parent / child  the process tree

46

pstree example

$ pstree | view -
init-+-NetworkManager-+-dhclient
 |-apache2
 |-chrome-+-chrome
 | `-chrome
 |-chrome---chrome
 |-clementine
 |-clock-applet
 |-cron
 |-cupsd
 |-firefox---run-mozilla.sh---firefox-bin-+-plugin-cont
 |-gnome-screensaver
 |-grep
 |-in.tftpd
 |-ntpd
 `-sshd---sshd---sshd---bash-+-gcc---gcc---cc1
 |-pstree
 |-vim
 `-view

47

Processes Under UNIX

Init is a special case. For others…

Q: How does parent process create child process?

A: fork() system call

Wait. what? int fork() returns TWICE!

48

Example

main(int ac, char **av) {

 int x = getpid(); // get current process ID from OS

 char *hi = av[1]; // get greeting from command line

 printf(“I’m process %d\n”, x);

 int id = fork();

 if (id == 0)

 printf(“%s from %d\n”, hi, getpid());

 else

 printf(“%s from %d, child is %d\n”, hi, getpid(), id);

}

$ gcc -o strange strange.c

$./strange “Hey”

I’m process 23511

Hey from 23512

Hey from 23511, child is 23512

49

Inter-process Communication

Parent can pass information to child

• In fact, all parent data is passed to child

• But isolated after (C-O-W ensures changes are invisible)

Q: How to continue communicating?

A: Invent OS “IPC channels” : send(msg), recv(), …

50

Inter-process Communication

Parent can pass information to child

• In fact, all parent data is passed to child

• But isolated after (C-O-W ensures changes are invisible)

Q: How to continue communicating?

A: Shared (Virtual) Memory!

51

Processes and Threads

52

Processes are heavyweight

Parallel programming with processes:

• They share almost everything
code, shared mem, open files, filesystem privileges, …

• Pagetables will be almost identical

• Differences: PC, registers, stack

Recall: process = execution context + address space

53

Processes and Threads

Process

OS abstraction of a running
computation

• The unit of execution

• The unit of scheduling

• Execution state
+ address space

From process perspective

• a virtual CPU

• some virtual memory

• a virtual keyboard, screen, …

Thread

OS abstraction of a single
thread of control

• The unit of scheduling

• Lives in one single process

From thread perspective

• one virtual CPU core on a
virtual multi-core machine

54

Multithreaded Processes

55

Threads

#include <pthread.h>

int counter = 0;

void PrintHello(int arg) {

 printf(“I’m thread %d, counter is %d\n”, arg, counter++);

 ... do some work ...

 pthread_exit(NULL);

}

int main () {

 for (t = 0; t < 4; t++) {

 printf(“in main: creating thread %d\n", t);

 pthread_create(NULL, NULL, PrintHello, t);

 }

 pthread_exit(NULL);

}

56

Threads versus Fork

in main: creating thread 0

I’m thread 0, counter is 0

in main: creating thread 1

I’m thread 1, counter is 1

in main: creating thread 2

in main: creating thread 3

I’m thread 3, counter is 2

I’m thread 2, counter is 3

If processes?

57

Example Multi-Threaded Program

Example: Apache web server
void main() {

setup();

 while (c = accept_connection()) {

 req = read_request(c);

 hits[req]++;
 send_response(c, req);

 }

 cleanup();

}

58

Race Conditions

Example: Apache web server

Each client request handled by a separate thread
(in parallel)

• Some shared state: hit counter, ...

(look familiar?)

Timing-dependent failure  race condition

• hard to reproduce  hard to debug

Thread 52
...
hits = hits + 1;
...

Thread 205
...
hits = hits + 1;
...

Thread 52
read hits
addi
write hits

Thread 205
read hits
addi
write hits

59

Programming with threads

Within a thread: execution is sequential

Between threads?

• No ordering or timing guarantees

• Might even run on different cores at the same time

Problem: hard to program, hard to reason about

• Behavior can depend on subtle timing differences

• Bugs may be impossible to reproduce

Cache coherency isn’t sufficient…

Need explicit synchronization to
make sense of concurrency!

60

Managing Concurrency

Races, Critical Sections, and Mutexes

61

Goals

Concurrency Goals

Liveness

• Make forward progress

Efficiency

• Make good use of resources

Fairness

• Fair allocation of resources between threads

Correctness

• Threads are isolated (except when they aren’t)

62

Race conditions

Race Condition

Timing-dependent error when
accessing shared state

• Depends on scheduling happenstance
… e.g. who wins “race” to the store instruction?

Concurrent Program Correctness =
all possible schedules are safe

• Must consider every possible permutation

• In other words…

 … the scheduler is your adversary

63

Critical sections

What if we can designate parts of the execution as
critical sections

• Rule: only one thread can be “inside”

Thread 52

read hits
addi
write hits

Thread 205

read hits
addi
write hits

64

Interrupt Disable

Q: How to implement critical section in code?
A: Lots of approaches….
Disable interrupts?
CSEnter() = disable interrupts (including clock)
CSExit() = re-enable interrupts

Works for some kernel data-structures
Very bad idea for user code

read hits
addi
write hits

65

Preemption Disable

Q: How to implement critical section in code?
A: Lots of approaches….
Modify OS scheduler?
CSEnter() = syscall to disable context switches
CSExit() = syscall to re-enable context switches

Doesn’t work if interrupts are part of the problem
Usually a bad idea anyway

read hits
addi
write hits

66

Mutexes

Q: How to implement critical section in code?
A: Lots of approaches….
Mutual Exclusion Lock (mutex)
acquire(m): wait till it becomes free, then lock it
release(m): unlock it

apache_got_hit() {
 pthread_mutex_lock(m);
 hits = hits + 1;
 pthread_mutex_unlock(m)
}

67

Q: How to implement mutexes?

