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Shared Memory Multiprocessors 

Shared Memory Multiprocessor (SMP) 

• Typical (today): 2 – 4 processor dies, 2 – 8 cores each 

• Assume physical addresses (ignore virtual memory) 

• Assume uniform memory access (ignore NUMA) 

Core0 Core1 CoreN 

Cache Cache Cache 

Memory I/O 

Interconnect 

... 
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Fo 

Synchronization 

The need for synchronization arises whenever  

there are concurrent processes in a system. 

    (even in a uni-processor system) 

  

Fork 

P1 P2 

Join 

Producer 

Consumer 

Forks and Joins: In parallel programming, 
a parallel process may want to wait until 
several events have occurred. 
 
Producer-Consumer: A consumer process 
must wait until the producer process has 
produced data 
 
Exclusive use of a resource: Operating 
system has to ensure that only one 
process uses a resource at a given time 
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Processes and Threads 

Process 

OS abstraction of a running 
computation 

• The unit of execution 

• The unit of scheduling 

• Execution state 
+ address space 

From process perspective 

• a virtual CPU 

• some virtual memory 

• a virtual keyboard, screen, … 

Thread 

OS abstraction of a single 
thread of control 

• The unit of scheduling 

• Lives in one single process 

From thread perspective 

• one virtual CPU core on a 
virtual multi-core machine 

All you need to know about OS (for today) 

Thread is much more lightweight. 
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Thread A                                  Thread B 
for(int i = 0, i < 5; i++) {      for(int j = 0; j < 5; j++) { 
   x = x + 1;                                 x = x + 1; 
}      } 
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Thread A                                        Thread B 
for(int i = 0, i < 5; i++) {            for(int j = 0; j < 5; j++) {  
   LW $t0, addr(x)                             LW $t0, addr(x) 
   ADDI $t0, $t0, 1                            ADDI $t0, $t0, 1 
   SW $t0, addr(x)                             SW $t0, addr(x) 
}                                                     } 
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Possible interleaves: 
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Atomic operation 

To understand concurrent processes, we need to 
understand the underlying indivisible operations. 

Atomic operation: an operation that always runs to the 
end or not at all. 

• Indivisible. Its can not be stopped in the middle. 
• Fundamental building blocks.  
• Execution of a single instruction is atomic. 
Examples: 
• Atomic exchange. 
• Atomic compare and swap. 
• Atomic fetch and increment. 
• Atomic memory operation. 
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Agenda 

- Why cache coherency is not sufficient? 

- HW support for synchronization 

- Locks + barriers 
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Cache Coherence Problem 

Shared Memory Multiprocessor (SMP) 

What could possibly go wrong? 

... 
x = x+1 
... 

... 
while (x==5) { 
  // wait 
} 
... 

Core0 Core1 Core3 

I/O 

Interconnect 

... 
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Coherence Defined 

Cache coherence defined... 

Informal: Reads return most recently written value 

Formal: For concurrent processes P1 and P2 

• P writes X before P reads X (with no intervening writes) 
 read returns written value 

• P1 writes X before P2 reads X  
 read returns written value 

• P1 writes X and P2 writes X 
 all processors see writes in the same order 

– all see the same final value for X 
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Snooping 

Recall: Snooping for Hardware Cache Coherence 

• All caches monitor bus and all other caches 

• Bus read: respond if you have dirty data 

• Bus write: update/invalidate your copy of data 

 

Core0 

Cache 

Memory I/O 

Interconnect 

Core1 

Cache 

CoreN 

Cache 

... 
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Is cache coherence sufficient? 

Example with cache coherence: 

P1 P2  

x = x +1 while (x==5) ; 
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Is cache coherence sufficient? 

Example with cache coherence: 

P1 P2 

x = x +1 x = x + 1 
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Hardware Primitive: Test and Set 

Test-and-set is a typical way to achieve synchronization when only 
one processor is allowed to access a critical section.  

 
 

Hardware atomic equivalent of… 
int test_and_set(int *m) { 

    old = *m; 

    *m = 1; 

    return old; 

} 

• If return value is 0, then you succeeded in acquiring the test-and-set. 
• If return value is non-0, then you did not succeed. 
• How do you "unlock" a test-and-set? 
 
     Test-and-set on Intel: 
          xchg dest, src 
• Exchanges destination and source. 
• How do you use it? 
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Using test-and-set for mutual exclusion 

Use test-and-set to implement mutex / spinlock / crit. sec. 

 

int m = 0; 

... 

 

while (test_and_set(&m)) { /* skip */ }; 

 

 

m = 0; 
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Snoop Storm 

mutex acquire:    mutex release: 

 LOCK BTS var, 0          MOV var, 0 

 JC mutex acquire 

• mutex acquire is very tight loop 
• Every iteration stores to shared memory location 
• Each waiting processor needs var in E/M each iteration 
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Test and test and set 

mutex acquire:    mutex release: 

 TEST var, 1          MOV var, 0 

 JNZ mutex acquire 

 LOCK BTS var, 0 

 JC mutex acquire 

• Most of wait is in top loop with no store 
• All waiting processors can have var in $ in top loop 
• Top loop executes completely in cache 
• Substantially reduces snoop traffic on bus 
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Hardware Primitive: LL & SC 

• LL: load link (sticky load) returns the value in a memory location. 

• SC: store conditional: stores a value to the memory location ONLY 
if that location hasn’t changed since the last load-link. 

• If update has occurred, store-conditional will fail. 

• LL rt, immed(rs) (“load linked”) — rt ← Memory[rs+immed] 

• SC rt, immed(rs) (“store conditional”) — 

   if  no writes to Memory[rs+immed] since ll: 

    Memory[rs+immed] ← rt; rt ← 1 

   otherwise: 

    rt ← 0 

 

•  MIPS, ARM, PowerPC, Alpha has this support.  

•  Each instruction needs two register. 
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Operation of LL & SC. 

try: mov  R3, R4    ;mov exchange value 

     ll   R2, 0(R1) ;load linked 

     sc   R3, 0(R1) ;store conditional 

     beqz R3, try   ;branch store fails 

     mov  R4, R2    ;put load value in R4 

Any time a processor intervenes and modifies the value 
in memory between the ll and sc instruction, the sc 
returns 0 in R3, causing the code to try again. 
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mutex from LL and SC 

fmutex_lock(int *m) { 

again: 

 LL t0, 0(a0) 

 BNE t0, zero, again 

 ADDI t0, t0, 1 

 SC t0, 0(a0) 

 BEQ t0, zero, again 

} 

Linked load / Store Conditional 
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More example on LL & SC 

  try:   ll    R2, 0(R1)   ;load linked 

         addi  R3, R2, #1     

   sc   R3, 0(R1)   ;store condi 

   beqz  R3, try     ;branch store fails 

This has a name! 
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Hardware Primitive: CAS 

• Compare and Swap 

• Compares the contents of a memory location with a value and if 
they are the same, then modifies the memory location to a new 
value. 

• CAS on Intel: 
 cmpxchg loc, val 

• Compare value stored at memory location loc to contents of the 
Compare Value Application Register. 

• If they are the same, then set loc to val. 

• ZF flag is set if the compare was true, else ZF is 0 

 

• X86 has this support, needs three registers (address, old value, 
new value). CISC instruction. 
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Alternative Atomic Instructions 

Other atomic hardware primitives 

 - test and set (x86) 

 - atomic increment (x86) 

 - bus lock prefix (x86) 

 - compare and exchange (x86, ARM deprecated) 

 - linked load / store conditional  
(MIPS, ARM, PowerPC, DEC Alpha, …) 
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Spin waiting 

Also called: spinlock, busy waiting, spin waiting, … 

• Efficient if wait is short 

• Wasteful if wait is long 

 

Possible heuristic: 

• spin for time proportional to expected wait time 

• If time runs out, context-switch to some other thread 
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Read lock 

 variable 

Succeed? 

    (=0?) 

Try to lock variable using ll&sc: 

   read lock variable and set it 

         to locked value (1) 

Unlocked? 

    (=0?) 

No 

Yes 

No Begin update of 

shared data 

Finish update of 

shared data 

Yes 

. 

. 

. 

  unlock variable: 

set lock variable 

to 0 

Spin 

atomic 

operation 

The single winning processor will read a 0 - 

all others processors will read the 1 set by 

the winning processor 

Spin Lock 
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Example  

  _itmask # enter critical section  

# lock acquisition loop  

  LL r1, 0(r4)  # r1 <= M[r4]  

  BNEZ r1, loop # retry if lock                     

     already taken (r1 != 0)  

  ORI r1, r0, 1 # r1 <= 1  

  SC r1, 0(r4)  # if atomic (M[r4] <= 1 /  

     r1 <= 1) else (r1 <= 0)  

  BEQZ r1, loop # retry if not atomic (r1  

     == 0) ...  

# lock release  

  ORI r1, r0, 0 # r1 <= 0  

  SW r1, 0(r4)  # M[r4] <= 0  

  _itunmask # exit critical section 
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How do we fix this? 

Thread A                                  Thread B 
for(int i = 0, i < 5; i++) {      for(int j = 0; j < 5; j++) { 
    

   

  x = x + 1;                                 x = x + 1; 
 

 

 }      } 

acquire_lock(m);                         acquire_lock(m); 

release_lock(m);                         release_lock(m); 
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Guidelines for successful mutexing 

Insufficient locking can cause races 

• Skimping on mutexes? Just say no! 

Poorly designed locking can cause deadlock 

 

 

• know why you are using mutexes! 

• acquire locks in a consistent order to avoid cycles 

• use lock/unlock like braces (match them lexically) 

– lock(&m); …; unlock(&m) 

– watch out for return, goto, and function calls! 

– watch out for exception/error conditions! 

 

P1: lock(m1); 
 lock(m2); 

P2: lock(m2); 
 lock(m1); 
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Summing Numbers on a SMP 
sum[Pn] = 0; 

for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1) 

 sum[Pn] = sum[Pn] + A[i]; 

     /* each processor sums its 

     /* subset of vector A 

repeat   /* adding together the  

     /* partial sums 

 synch();   /*synchronize first 

 if (half%2 != 0 && Pn == 0) 

  sum[0] = sum[0] + sum[half-1]; 

 half = half/2 

 if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half]; 

until (half == 1); /*final sum in sum[0] 

 A[i]; 

     /* each processor sums its 

     /* subset of vector A 
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Barrier Synchronization 

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 

P0 P1 P2 P3 P4 

P0 P1 

P0 
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Simple Barrier Synchronization 

lock(); 

if(count==0) release=FALSE;  /* First resets release */ 

count++;                    /* Count arrivals */ 

unlock(); 

if(count==total)             /* All arrived */   

{ 

  count=0;                   /* Reset counter */ 

  release = TRUE;            /* Release processes */ 

} 

else                         /* Wait for more to come */ 

{ 

  while (!release);          /* Wait for release  */ 

} 

Problem: deadlock possible if reused 
• Two processes: fast and slow 
• Slow arrives first, reads release, sees FALSE 
• Fast arrives, sets release to TRUE, goes on to execute other code, 

comes to barrier again, resets release to FALSE, starts spinning on wait for release 
• Slow now reads release again, sees FALSE again 
• Now both processors are stuck and will never leave 
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Correct Barrier Synchronization 

localSense=!localSense;    /* Toggle local sense */ 

lock(); 

  count++;                 /* Count arrivals */ 

  if(count==total){        /* All arrived */ 

    count=0;               /* Reset counter */ 

    release=localSense;    /* Release processes */ 

  } 

unlock(); 

while(release==localSense); /* Wait to be released */ 

Release in first barrier acts as reset for second 
• When fast comes back it does not change release, 

it just waits for it to become FALSE 

• Slow eventually sees release is TRUE, stops waiting, 
does work, comes back, sets release to FALSE, and both go forward. 

initially localSense = True, release = FALSE 
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Large-Scale Systems: Barriers 

Barrier with many processors 
• Have to update counter one by one – takes a long time 
• Solution: use a combining tree of barriers 

– Example: using a binary tree 
– Pair up processors, each pair has its own barrier 

• E.g. at level 1 processors 0 and 1 synchronize on one 
barrier, processors 2 and 3 on another, etc. 

– At next level, pair up pairs 
• Processors 0 and 2 increment a count a level 2, 

processors 1 and 3 just wait for it to be released 
• At level 3, 0 and 4 increment counter, while 1, 2, 3, 5, 6, 

and 7 just spin until this level 3 barrier is released 
• At the highest level all processes will spin and a few 

“representatives” will be counted. 
– Works well because each level fast and few levels 

• Only 2 increments per level, log2(numProc) levels 
• For large numProc, 2*log2(numProc) still reasonably small 
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Beyond Mutexes 

Lanaguage-level synchronization 

• Conditional variables 

• Monitors 

• Semaphores  
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Software Support for  
Synchronization and Coordination: 

Programs and Processes 
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Processes 

How do we cope with lots of activity? 

 

 

 

 

 

Simplicity? Separation into processes 

Reliability? Isolation 

Speed? Program-level parallelism 

gcc emacs nfsd 

lpr 
ls www 

emacs 

nfsd lpr 

ls www OS 

OS 
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Process and Program 

Process 

OS abstraction of a running 
computation 

• The unit of execution 

• The unit of scheduling 

• Execution state 
+ address space 

From process perspective 

• a virtual CPU 

• some virtual memory 

• a virtual keyboard, screen, … 

Program 

“Blueprint” for a process 

• Passive entity (bits on disk) 

• Code + static data 
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Role of the OS 

Role of the OS 

Context Switching 

• Provides illusion that every process owns a CPU 

Virtual Memory 

• Provides illusion that process owns some memory 

Device drivers & system calls 

• Provides illusion that process owns a keyboard, … 

 

To do:  

  How to start a process? 

  How do processes communicate / coordinate? 
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Role of the OS 
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Creating Processes: 

Fork 
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How to create a process? 

Q: How to create a process?  

A: Double click 

After boot, OS starts the first process 

…which in turn creates other processes 

• parent / child   the process tree 
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pstree example 

$ pstree | view - 
init-+-NetworkManager-+-dhclient 
     |-apache2 
     |-chrome-+-chrome 
     |        `-chrome 
     |-chrome---chrome 
     |-clementine 
     |-clock-applet 
     |-cron 
     |-cupsd 
     |-firefox---run-mozilla.sh---firefox-bin-+-plugin-cont 
     |-gnome-screensaver 
     |-grep 
     |-in.tftpd 
     |-ntpd 
     `-sshd---sshd---sshd---bash-+-gcc---gcc---cc1 
                                 |-pstree 
                                 |-vim 
                                 `-view 
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Processes Under UNIX 

Init is a special case. For others… 

Q: How does parent process create child process? 

A: fork() system call 

 

 

 

 

 

 

 

 

Wait. what? int fork() returns TWICE! 
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Example 

main(int ac, char **av) { 

 int x = getpid(); // get current process ID from OS 

 char *hi = av[1]; // get greeting from command line 

 printf(“I’m process %d\n”, x); 

 int id = fork(); 

 if (id == 0) 

  printf(“%s from %d\n”, hi, getpid()); 

 else 

       printf(“%s from %d, child is %d\n”, hi, getpid(), id); 

} 

$ gcc -o strange strange.c 

$ ./strange “Hey” 

I’m process 23511 

Hey from 23512 

Hey from 23511, child is 23512 
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Inter-process Communication 

Parent can pass information to child 

• In fact, all parent data is passed to child 

• But isolated after (C-O-W ensures changes are invisible) 

Q: How to continue communicating? 

A: Invent OS “IPC channels” : send(msg), recv(), … 
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Inter-process Communication 

Parent can pass information to child 

• In fact, all parent data is passed to child 

• But isolated after (C-O-W ensures changes are invisible) 

Q: How to continue communicating? 

A: Shared (Virtual) Memory! 
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Processes and Threads 



52 

Processes are heavyweight 

Parallel programming with processes: 

• They share almost everything  
code, shared mem, open files, filesystem privileges, … 

• Pagetables will be almost identical 

• Differences: PC, registers, stack 

Recall: process = execution context + address space 
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Processes and Threads 

Process 

OS abstraction of a running 
computation 

• The unit of execution 

• The unit of scheduling 

• Execution state 
+ address space 

From process perspective 

• a virtual CPU 

• some virtual memory 

• a virtual keyboard, screen, … 

Thread 

OS abstraction of a single 
thread of control 

• The unit of scheduling 

• Lives in one single process 

From thread perspective 

• one virtual CPU core on a 
virtual multi-core machine 
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Multithreaded Processes 
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Threads 

#include <pthread.h>  

int counter = 0; 

 

void PrintHello(int arg) { 

 printf(“I’m thread %d, counter is %d\n”, arg, counter++); 

 ... do some work ... 

 pthread_exit(NULL);  

} 

 

int main () {  

 for (t = 0; t < 4; t++) { 

     printf(“in main: creating thread %d\n", t);  

     pthread_create(NULL, NULL, PrintHello, t); 

   }  

   pthread_exit(NULL);  

}  
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Threads versus Fork 

in main: creating thread 0 

I’m thread 0, counter is 0 

in main: creating thread 1 

I’m thread 1, counter is 1 

in main: creating thread 2 

in main: creating thread 3 

I’m thread 3, counter is 2 

I’m thread 2, counter is 3 

 

If processes? 
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Example Multi-Threaded Program 

Example: Apache web server 
void main() { 

setup(); 

 while (c = accept_connection()) { 

 
 req = read_request(c); 

  hits[req]++; 
 send_response(c, req); 

  

 } 

 cleanup(); 

} 
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Race Conditions 

Example: Apache web server 

Each client request handled by a separate thread 
(in parallel) 

• Some shared state: hit counter, ... 

 

 

 

 

(look familiar?) 

Timing-dependent failure  race condition 

•  hard to reproduce  hard to debug 

Thread 52 
... 
hits = hits + 1; 
... 

Thread 205 
... 
hits = hits + 1; 
... 

Thread 52 
read hits 
addi 
write hits 

Thread 205 
read hits 
addi 
write hits 
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Programming with threads 

Within a thread: execution is sequential 

Between threads? 

• No ordering or timing guarantees 

• Might even run on different cores at the same time 

Problem: hard to program, hard to reason about 

• Behavior can depend on subtle timing differences 

• Bugs may be impossible to reproduce 

 

Cache coherency isn’t sufficient… 

Need explicit synchronization to  
make sense of concurrency! 
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Managing Concurrency 

Races, Critical Sections, and Mutexes 
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Goals 

Concurrency Goals 

Liveness 

• Make forward progress 

Efficiency 

• Make good use of resources 

Fairness 

• Fair allocation of resources between threads 

Correctness 

• Threads are isolated (except when they aren’t) 
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Race conditions 

Race Condition 

Timing-dependent error when  
accessing  shared state  

• Depends on scheduling happenstance 
… e.g. who wins “race” to the store instruction? 

Concurrent Program Correctness = 
all possible schedules are safe   

• Must consider every possible permutation 

• In other words… 

  … the scheduler is your adversary 
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Critical sections 

What if we can designate parts of the execution as 
critical sections 

• Rule: only one thread can be “inside” 

Thread 52 
 
 
read hits 
addi 
write hits 
 
 
 

Thread 205 
 
 
read hits 
addi 
write hits 
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Interrupt Disable 

Q: How to implement critical section in code? 
A: Lots of approaches…. 
Disable interrupts? 
CSEnter() = disable interrupts (including clock) 
CSExit() = re-enable interrupts 
 
 
 
 
 
 
Works for some kernel data-structures 
Very bad idea for user code 

read hits 
addi 
write hits 
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Preemption Disable 

Q: How to implement critical section in code? 
A: Lots of approaches…. 
Modify OS scheduler? 
CSEnter() = syscall to disable context switches 
CSExit() = syscall to re-enable context switches 
 
 
 
 
 
 
Doesn’t work if interrupts are part of the problem 
Usually a bad idea anyway 

read hits 
addi 
write hits 
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Mutexes 

Q: How to implement critical section in code? 
A: Lots of approaches…. 
Mutual Exclusion Lock (mutex) 
acquire(m): wait till it becomes free, then lock it 
release(m): unlock it 
 

apache_got_hit() { 
 pthread_mutex_lock(m); 
 hits = hits + 1; 
 pthread_mutex_unlock(m) 
} 
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Q: How to implement mutexes? 


