Synchronization

Han Wang
CS 3410, Spring 2012
Computer Science
Cornell University

P&H Chapter 2.11

Shared Memory Multiprocessor (SMP)

Shared Memory Multiprocessors

e Typical (today): 2 — 4 processor dies, 2 — 8 cores each

* Assume physical addresses (ignore virtual memory)

e Assume uniform memory access (ighore NUMA)

CoreO

Corel

Cache

Cache

!

!

CoreN

Cache

!

Interconnect

!

Memory

!

/0

Synchronization

The need for synchronization arises whenever @
there are concurrent processes in a system.

()

Forks and Joins: In parallel programming,

a parallel process may want to wait until @
several events have occurred.

Producer-Consumer: A consumer process l,
must wait until the producer process has Producer
produced data 1'

. . Consumer
Exclusive use of a resource: Operating

system has to ensure that only one l,
process uses a resource at a given time

Processes and Threads

All you need to know about OS (for today)

Process Thread
OS abstraction of a running QS abstraction of a single
computation thread of control

e The unit of execution * The unit of scheduling

* The unit of scheduling e Lives in one single process

* Execution state

From thread perspective
+ address space

e one virtual CPU core on a

From process perspective virtual multi-core machine

e avirtual CPU

* some virtual memory Thread is much more lightweight.
e avirtual keyboard, screen, ...

Thread A Thread B
for(inti=0,i<5;i++){ for(intj=0;j<5;j++){
X=X+ 1; X=X+ 1;

J J

P T2

Thread A Thread B
for(inti=0,i<5; i++) { for(intj = 0; j < 5; j++)

{
LW $t0,@ddr(x}— W LW $t0, addr(x) 'P‘
&
&

ADDI $t0, 5t0,1 (B2 (27 ADDISt0, $t0, 1
SW $t0, addr(x) \(&@/ €2 SW $t0, addr(x) &,
} } —
m 17 \cpv) X 4L
| '7: 3

Ce\V
(. :
_ ' J
W' XYL

)]

Possible interleaves:

Atomic operation

To understand concurrent processes, we need to
understand the underlying indivisible operations.

Atomic operation: an operation that always runs to the
end or not at all.

« Indivisible. Its can not be stopped in the middle.
- Fundamental building blocks.

- Execution of a single instruction is atomic.
Examples:

- Atomic exchange.

- Atomic compare and swap.

- Atomic fetch and increment.

« Atomic memory operation.

Agenda

Why cache coherency is not sufficient?
HW support for synchronization
Locks + barriers

Shared Memory Multiprocessor (SMP)

What could possibly go wrong?

eeeeeeeeeeeeeeeeeeeee

e b while (x==5) {

Core0 Corel Core3
SRER T 7 3
Interconnect
) !
M\ /O

}

// wait

10

Coherence Define

Cache coherence defined...
Informal: Reads return most recently written value

Formal: For concurrent processes P, and P,

e P writes X before P reads X (with no intervening writes)
—> read returns written value

* P, writes X before P, reads X
— read returns written value

* P, writes X and P, writes X
— all processors see writes in the same order

— all see the same final value for X

11

Recall: Shooping for Hardware Cache Coherence

* All caches monitor bus and all other caches
* Bus read: respond if you have dirty data
e Bus write: update/invalidate your copy of data

ngei/)

Caché

!

Corel

{

Cache

!

CoreN

Cache

Interconnect

!

Memory

!

/0

12

Is cache coherence sufficient?

Example with cache coherence:

Pl PZ

X=x+1 while (x==5) ;
LW €te o(RD ——
OdAl Qo i | pLade ile

Siv L olrRR) éc’o\

13

Example with cache coherence:
P AL =— O

14

Hardware Primitive: Test and Set

Test-and-set is a typical way to achieve synchronization when only
one processor is allowed to access a critical section.

Hardware atomic equivalent of...
int test and set (int *m) {
old *m;

A = 1
<eturn old;

}

If return value is non-0, then you did not succeed.
How do you "unlock" a test-and-set?

Test-and-set on Intel:

xchg dest, src
Exchanges destination and source.
How do you use it?

If return value is O, then you succeeded in acquiring the test-and-set.

15

Using test-and-set for mutual exclusion

Use test-and-set to implement mutex / spinlock / crit. sec.

int m = 0;

while (test and set(&m)) { /* skip */ };

=
|
Q)
oo

16

SNhoop Storm

mutex acquire: mutex release:
LOCK BTS var, O MOV var, O
JC mutex acquire

* mutex acquire is very tight loop
* Every iteration stores to shared memory location
e Each waiting processor needs var in E/M each iteration

17

Test and test and set

mutex acquire: mutex release:
TEST var, 1 MOV var, O
JNZ mutex acquire
LOCK BTS var, O
JC mutex acquire

 Most of wait is in top loop with no store

* All waiting processors can have varin S in top loop
 Top loop executes completely in cache

e Substantially reduces snoop traffic on bus

18

Hardware Primitive: LL & SC

LL: load link (sticky load) returns the value in a memory location.

SC: store conditional: stores a value to the memory location ONLY
if that location hasn’t changed since the last load-link.

If update has occurred, store-conditional will fail.

LL rt, immed(rs) (“load linked”) — rt & Memory[rs+immed]
SC rt, immed(rs) (“store conditional”) —
if no writes to Memory[rs+immed] since |l:
Memory[rs+immed] < rt; rt & 1
otherwise:
<0

MIPS, ARM, PowerPC, Alpha has this support.
Each instruction needs two register.

19

Operation of LL & SC.

try: mov R3, R4 ;ymov exchange value
11 R2, O(R1l) ;load linked
SC R3, O(R1) ;store conditional
begz R3, try ;branch store fails
mov R4, R2 ;yput load value 1in R4

Any time a processor intervenes and modifies the value
in memory between the Il and sc instruction, the sc
returns 0 in R3, causing the code to try again.

20

mutex from LL and SC

Linked load / Store Conditional

fmutex lock(int *m)
agalin:
LL t0, 0(a0)
BNE t0, zero, again
ADDI tO, tO, 1
SC t0, 0(a0)
BEQ t0, zero, again

21

More example on LL & SC

try:

11
addil

SC

beqgz

R2, O0(R1) ; load linked

R3, R2, #1

R3, O (R1) ;store condi

R3, try ;branch store fails

This has a name!

22

Hardware Primitive: CAS

Compare and Swap

Compares the contents of a memory location with a value and if
they are the same, then modifies the memory location to a new
value.

CAS on Intel:

cmpxchg loc, val

Compare value stored at memory location loc to contents of the
Compare Value Application Register.

* |f they are the same, then set loc to val.
» ZF flag is set if the compare was true, else ZF is O

* X86 has this support, needs three registers (address, old value,
new value). CISC instruction.

23

Alternative Atomic Instructions

Other atomic hardware primitives
- test and set (x86)

- atomic increment (x86)

- bus lock prefix (x86)

- compare and exchange (x86, ARM deprecated)

- linked load / store conditional
(MIPS, ARM, PowerPC, DEC Alpha, ...)

24

Spin waiting

Also called: spinlock, busy waiting, spin waiting, ...

e Efficient if wait is short

e Wasteful if wait is long

Possible heuristic:
 spin for time proportional to expected wait time
* |f time runs out, context-switch to some other thread

25

Read lock

No

A 4

variable

Unlocked?

A

Try to lock variable using ll&sc:
read lock variable and set it

(=0?)

l Yes

to locked value (1)

No @ Yes

A

Spin Lock

Spin

unlock variable:
set lock variable
to 0

A

Finish update of
shared data

(

(=0?)

[\

Begin update of
shared data

The single winning processor will read a O -

all others processors will read the 1 set by

the winning processor

26

Example

_itmask # enter critical section

lock acquisition loop
LL rl, O(rd) #

BNEZ rl,

ORI rl,

loop #

r0, 1 #

SC rl, O0(r4d) #

BEQZ rl,

loop #

lock release

ORI rl,

SW rl, 0(r4)

rO, 0O #

rl <= M[r4d]

retry 1f lock

already taken (rl != 0)
rl <=1

1f atomic (M[r4d] <=1 /
rl <= 1) else (rl <= 0)
retry 1f not atomic (rl

== 0)

rl <= 0

M[rd] <= 0

_ltunmask # exit critical section

27

How do we fix this?

Thread A Thread B
for(inti=0,i<5;i++){ for(intj=0;j<5;j++){

acquire_lock(m); acquire_lock(m);
X=X+ 1; X=X+ 1;
release_lock(m); release_lock(m);

28

29

Guidelines for successful mutexing

Insufficient locking can cause races
e Skimping on mutexes? Just say no!
Poorly designed locking can cause deadlock

P1l: lock(ml); P2: lock(m2);
lock(m2); lock(ml);

* know why you are using mutexes!

e acquire locks in a consistent order to avoid cycles

 use lock/unlock like braces (match them lexically)
— lock(&m); ...; unlock(&m)
— watch out for return, goto, and function calls!
— watch out for exception/error conditions!

30

Summing Numbers on a SMP

sum[Pn] = 0;
for (1 = 1000*Pn; i< 1000*(Pn+l); 1 = 1 + 1)
sum|[Pn] = sum[Pn] + A[1];
/* each processor sums its
/* subset of vector A
repeat /* adding together the
/* partial sums
1f (half%2 !'= 0 && Pn == 0)
sum[0] = sum[0] + sum[half-1];
half = half/?2
1f (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half];
until (half == 1); /*final sum in sum[0]
Ali];

/* each processor sums its
/* subset of vector A

31

Barrier Synchronization

@) @ @ E E e F)) ()

/

32

Simple Barrier Synchronization

lock() ;
if (count==0) release=FALSE; /* First resets release */
count++; /* Count arrivals */
unlock () ;
if (count==total) /* All arrived */
{
count=0; /* Reset counter */
release = TRUE; /* Release processes */
}
else /* Wait for more to come */
{
while ('release) ; /* Wait for release */
}

Problem: deadlock possible if reused
* Two processes: fast and slow
* Slow arrives first, reads release, sees FALSE

e Fast arrives, sets release to TRUE, goes on to execute other code,
comes to barrier again, resets release to FALSE, starts spinning on wait for release

* Slow now reads release again, sees FALSE again
* Now both processors are stuck and will never leave

34

Correct Barrier Synchronization

[initially localSense = True, release = FALSE]
localSense=!localSense; /*
lock() ;
count++; /*
if (count==total) { /*
count=0; /*
release=localSense; /*

}

unlock () ;

Toggle local sense */

Count arrivals */
All arrived */
Reset counter */
Release processes */

while (release==localSense); /* Wait to be released */

Release in first barrier acts as reset for second
 When fast comes back it does not change release,

it just waits for it to become FALSE

* Slow eventually sees release is TRUE, stops waiting,
does work, comes back, sets release to FALSE, and both go forward.

35

36

Large-Scale Systems: Barriers

Barrier with many processors
* Have to update counter one by one — takes a long time
e Solution: use a combining tree of barriers
— Example: using a binary tree
— Pair up processors, each pair has its own barrier

e E.g. atlevel 1 processors 0 and 1 synchronize on one
barrier, processors 2 and 3 on another, etc.

— At next level, pair up pairs

* Processors 0 and 2 increment a count a level 2,
processors 1 and 3 just wait for it to be released

* At level 3, 0 and 4 increment counter, while 1, 2, 3, 5, 6,
and 7 just spin until this level 3 barrier is released

* At the highest level all processes will spin and a few
“representatives” will be counted.

— Works well because each level fast and few levels
* Only 2 increments per level, log,(numProc) levels
* For large numProc, 2*log,(numProc) still reasonably smal}

Beyond Mutexes

Lanaguage-level synchronization
Conditional variables
Monitors
Semaphores

38

Software Support for
Synchronization and Coordination:

Programs and Processes

39

sssssssss

How do we cope with lots of activity?

Is[lwww | lemacs

nfsd lpr
OS

Simplicity? Separation into processes
Reliability? Isolation
Speed? Program-level parallelism

40

Process and Program

Process Program

OS abstraction of a running “Blueprint” for a process
computation e Passive entity (bits on disk)
* The unit of execution e Code + static data
* The unit of scheduling

* Execution state
+ address space

From process perspective
e avirtual CPU
e some virtual memory
e avirtual keyboard, screen, ...

41

Role of the OS

Role of the OS

Context Switching
* Provides illusion that every process owns a CPU

Virtual Memory
* Provides illusion that process owns some memory

Device drivers & system calls
* Provides illusion that process owns a keyboard, ...

To do:
How to start a process?
How do processes communicate / coordinate?

42

Role of the OS

43

Creating Processes:
Fork

44

Q: How to create a process?
A: Double click
After boot, OS starts the first process

...which in turn creates other processes
* parent / child = the process tree

45

pstree example

$ pstree | view -
init-+-NetworkManager-+-dhclient

-apache?2
-chrome-+-chrome
" -chrome

-chrome---chrome

-clementine

-clock-applet

-cron

-cupsd

-firefox---run-mozilla.sh---firefox-bin-+-plugin-cont

-gnome-screensaver

-grep

-in.tftpd

-ntpd

" -sshd---sshd---sshd---bash-+-gcc---gcc---ccl

| -pstree
| -vim

T -view

46

Processes Under UNIX

Init is a special case. For others...
Q: How does parent process create child process?
A: fork() system call

Wait. what? int fork() returns TWICE!

47

Example

main(int ac, char **av) {
int x = getpid(); // get current process ID from 0S
char *hi = av[1]; // get greeting from command line
printf(“I’°m process %d\n”, x);
int id = fork();
if (id == 9)
printf(“%s from %d\n”, hi, getpid());
else
printf(“%s from %d, child is %d\n”, hi, getpid(), id);
}
$ gcc -o strange strange.c
$./strange “Hey”
I°’m process 23511
Hey from 23512
Hey from 23511, child is 23512

48

nter-process Communication

Parent can pass information to child
* In fact, all parent data is passed to child
e But isolated after (C-O-W ensures changes are invisible)

Q: How to continue communicating?
A: Invent OS “IPC channels” : send(msg), recv(), ...

49

nter-process Communication

Parent can pass information to child
* In fact, all parent data is passed to child
e But isolated after (C-O-W ensures changes are invisible)

Q: How to continue communicating?
A: Shared (Virtual) Memory!

50

Processes and Threads

51

Processes are heavyweight

Parallel programming with processes:

* They share almost everything
code, shared mem, open files, filesystem privileges, ...

e Pagetables will be almost identical
e Differences: PC, registers, stack

Recall: process = execution context + address space

52

Process

OS abstraction of a running
computation
* The unit of execution
* The unit of scheduling

* Execution state
+ address space

From process perspective
e avirtual CPU
* some virtual memory

e avirtual keyboard, screen, ...

Processes and Threads

Thread

OS abstraction of a single
thread of control
* The unit of scheduling
* Livesin one single process
From thread perspective

e one virtual CPU core on a
virtual multi-core machine

53

Multithreaded Processes

registers (|| registers ||| registers

stack stack stack

o III

single-threaded multithreaded

54

Threads

#include <pthread.h>
int counter = 0;

void PrintHello(int arg) {

printf(“I’m thread %d, counter is %d\n”, arg, counter++);
. do some work ...
pthread exit(NULL);

int main () {
for (t = 0; t < 4; t++) {
printf(“in main: creating thread %d\n", t);
pthread create(NULL, NULL, PrintHello, t);

}
pthread_exit(NULL);

55

in main: creating thread
I°’m thread 0, counter is
in main: creating thread
I°’m thread 1, counter is
in main: creating thread
in main: creating thread
I°m thread 3, counter is
I°’m thread 2, counter 1is

If processes?

w N W N R PO S

Threads versus For

56

Example Multi-Threaded Program

Example: Apache web server

void main() A
setup();

while (c = accept _connection()) {
req = read_request(c);

hits[req]++;
send _response(c, req);

¥

cleanup();

57

Example: Apache web server

Each client request handled by a separate thread
(in parallel)
 Some shared state: hit counter, ...

Thread 52 Thread 205
read hits read hits
addi addi

write hits write hits

(look familiar?)

Timing-dependent failure = race condition
* hard to reproduce = hard to debug

58

Programming with threads

Within a thread: execution is sequential
Between threads?

* No ordering or timing guarantees

* Might even run on different cores at the same time

Problem: hard to program, hard to reason about
e Behavior can depend on subtle timing differences
* Bugs may be impossible to reproduce

Cache coherency isn’t sufficient...

Need explicit synchronization to
make sense of concurrency!

59

Managing Concurrency
Races, Critical Sections, and Mutexes

0]

Concurrency Goals
Liveness
* Make forward progress
Efficiency
* Make good use of resources
Fairness
* Fair allocation of resources between threads
Correctness

* Threads are isolated (except when they aren’t)

61

Race Condition

Timing-dependent error when
accessing shared state

* Depends on scheduling happenstance
... €.8. who wins “race” to the store instruction?

Concurrent Program Correctness =
all possible schedules are safe

* Must consider every possible permutation
* In other words...

... the scheduler is your adversary

62

What if we can designate parts of the execution as
critical sections
* Rule: only one thread can be “inside”

Thread 52 Thread 205
read hits read hits
addi addi

write hits write hits

63

Q: How to implement critical section in code?
A: Lots of approaches....

Disable interrupts?

CSEnter() = disable interrupts (including clock)
CSExit() = re-enable interrupts

read hits
addi
write hits

Works for some kernel data-structures
Very bad idea for user code

64

| rupt Disable

eeeeeee ion Disable

Q: How to implement critical section in code?
A: Lots of approaches....

Modify OS scheduler?

CSEnter() = syscall to disable context switches
CSExit() = syscall to re-enable context switches

read hits
addi
write hits

Doesn’t work if interrupts are part of the problem
Usually a bad idea anyway 65

Q: How to implement critical section in code?
A: Lots of approaches....
Mutual Exclusion Lock (mutex)

acquire(m): wait till it becomes free, then lock it
release(m): unlock it

apache _got hit() {
pthread mutex_ lock(m);
hits = hits + 1;
pthread mutex_unlock(m)

66

Q: How to implement mutexes?

67

