
Virtual Memory 2

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

P & H Chapter 5.4

2

Administrivia
Project3 available now
• Design Doc due next week, Monday, April 16th
• Schedule a Design Doc review Mtg now for next week
• Whole project due Monday, April 23rd
• Competition/Games night Friday, April 27th, 5-7pm

HW5 is due today Tuesday, April 10th
• Download updated version. Use updated version.
• Online Survey due today.

Lab3 was due yesterday Monday, April 9th

Prelim3 is in two and a half weeks, Thursday, April 26th
• Time and Location: 7:30pm in Olin Hall room 155
• Old prelims are online in CMS

3

Goals for Today
Virtual Memory

• Address Translation

• Pages, page tables, and memory mgmt unit

• Paging

• Role of Operating System

• Context switches, working set, shared memory

• Performance

• How slow is it

• Making virtual memory fast

• Translation lookaside buffer (TLB)

• Virtual Memory Meets Caching

4

Role of the Operating System

Context switches, working set,

shared memory

5

sbrk
Suppose Firefox needs a new page of memory

(1) Invoke the Operating System

 void *sbrk(int nbytes);

(2) OS finds a free page of physical memory

• clear the page (fill with zeros)

• add a new entry to Firefox’s PageTable

6

Context Switch
Suppose Firefox is idle, but Skype wants to run

(1) Firefox invokes the Operating System

 int sleep(int nseconds);

(2) OS saves Firefox’s registers, load skype’s

• (more on this later)

(3) OS changes the CPU’s Page Table Base Register

• Cop0:ContextRegister / CR3:PDBR

(4) OS returns to Skype

7

Shared Memory
Suppose Firefox and Skype want to share data

(1) OS finds a free page of physical memory

• clear the page (fill with zeros)

• add a new entry to Firefox’s PageTable

• add a new entry to Skype’s PageTable

– can be same or different vaddr

– can be same or different page permissions

8

Multiplexing
Suppose Skype needs a new page of memory, but Firefox is

hogging it all

(1) Invoke the Operating System
 void *sbrk(int nbytes);

(2) OS can’t find a free page of physical memory
• Pick a page from Firefox instead (or other process)

(3) If page table entry has dirty bit set…
• Copy the page contents to disk

(4) Mark Firefox’s page table entry as “on disk”
• Firefox will fault if it tries to access the page

(5) Give the newly freed physical page to Skype
• clear the page (fill with zeros)

• add a new entry to Skyps’s PageTable

9

Paging Assumption 1
OS multiplexes physical memory among processes

• assumption # 1:
processes use only a few pages at a time

• working set = set of process’s recently actively pages

re

ce
n

t
ac

ce
ss

es

0x00000000 0x90000000

10

Reasons for Thrashing

Q: What if working set is too large?

Case 1: Single process using too many pages

Case 2: Too many processes

working set

mem disk

swapped P1

working set

mem disk

swapped

ws

mem disk

ws ws ws ws ws

11

Thrashing
Thrashing b/c working set of process (or processes)

greater than physical memory available
– Firefox steals page from Skype

– Skype steals page from Firefox

• I/O (disk activity) at 100% utilization

– But no useful work is getting done

Ideal: Size of disk, speed of memory (or cache)

Non-ideal: Speed of disk

12

Paging Assumption 2
OS multiplexes physical memory among processes

• assumption # 2:
recent accesses predict future accesses

• working set usually changes slowly over time

w
o

rk
in

g
se

t

time 

13

More Thrashing
Q: What if working set changes rapidly or

unpredictably?

A: Thrashing b/c recent accesses don’t predict
future accesses

w
o

rk
in

g
se

t

time 

14

Preventing Thrashing
How to prevent thrashing?

• User: Don’t run too many apps

• Process: efficient and predictable mem usage

• OS: Don’t over-commit memory, memory-aware
scheduling policies, etc.

15

Performance

16

Performance
Virtual Memory Summary

PageTable for each process:

• 4MB contiguous in physical memory, or multi-level, …

• every load/store translated to physical addresses

• page table miss = page fault
load the swapped-out page and retry instruction,
or kill program if the page really doesn’t exist,
or tell the program it made a mistake

17

Page Table Review
x86 Example: 2 level page tables, assume…

32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages

Q:How many bits for a page number?
A: 20

Q: What is stored in each PageTableEntry?

A: ppn, valid/dirty/r/w/x/…

Q: What is stored in each PageDirEntry?

A: ppn, valid/?/…

Q: How many entries in a PageDirectory?

A: 1024 four-byte PDEs

Q: How many entires in each PageTable?

A: 1024 four-byte PTEs

PDE

PTBR
PDE
PDE

PDE

PTE
PTE
PTE

PTE

18

Page Table Example
x86 Example: 2 level page tables, assume…

32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages
PTBR = 0x10005000 (physical)

Write to virtual address 0x7192a44c…
Q: Byte offset in page? PT Index? PD Index?

(1) PageDir is at 0x10005000, so…
Fetch PDE from physical address 0x1005000+4*PDI

• suppose we get {0x12345, v=1, …}

(2) PageTable is at 0x12345000, so…
Fetch PTE from physical address 0x12345000+4*PTI

• suppose we get {0x14817, v=1, d=0, r=1, w=1, x=0, …}

(3) Page is at 0x14817000, so…
Write data to physical address 0x1481744c
Also: update PTE with d=1

PDE

PTBR
PDE
PDE

PDE

PTE
PTE
PTE

PTE

19

Performance
Virtual Memory Summary

PageTable for each process:

• 4MB contiguous in physical memory, or multi-level, …

• every load/store translated to physical addresses

• page table miss: load a swapped-out page and retry
instruction, or kill program

Performance?

• terrible: memory is already slow
translation makes it slower

Solution?

• A cache, of course

20

Making Virtual Memory Fast

The Translation Lookaside Buffer (TLB)

21

Translation Lookaside Buffer (TLB)
Hardware Translation Lookaside Buffer (TLB)

A small, very fast cache of recent address mappings

• TLB hit: avoids PageTable lookup

• TLB miss: do PageTable lookup, cache result for later

22

TLB Diagram

V R W X D
0 invalid
1 0
0 invalid
0 invalid
1 0
0 0
1 1
0 invalid

V R W X D tag ppn

V
0 invalid
0 invalid
0 invalid
1
0 invalid
1
1
0 invalid

23

A TLB in the Memory Hierarchy

(1) Check TLB for vaddr (~ 1 cycle)

(2) TLB Miss: traverse PageTables for vaddr

(3a) PageTable has valid entry for in-memory page

• Load PageTable entry into TLB; try again (tens of cycles)

(3b) PageTable has entry for swapped-out (on-disk) page

• Page Fault: load from disk, fix PageTable, try again (millions of cycles)

(3c) PageTable has invalid entry

• Page Fault: kill process

CPU
TLB

Lookup
Cache

Mem Disk

PageTable
Lookup

 (2) TLB Hit

• compute paddr, send to cache

24

TLB Coherency
TLB Coherency: What can go wrong?

A: PageTable or PageDir contents change

• swapping/paging activity, new shared pages, …

A: Page Table Base Register changes

• context switch between processes

25

Translation Lookaside Buffers (TLBs)
When PTE changes, PDE changes, PTBR changes….

Full Transparency: TLB coherency in hardware

• Flush TLB whenever PTBR register changes
[easy – why?]

• Invalidate entries whenever PTE or PDE changes
[hard – why?]

TLB coherency in software

If TLB has a no-write policy…

• OS invalidates entry after OS modifies page tables

• OS flushes TLB whenever OS does context switch

26

TLB Parameters
TLB parameters (typical)

• very small (64 – 256 entries), so very fast

• fully associative, or at least set associative

• tiny block size: why?

Intel Nehalem TLB (example)

• 128-entry L1 Instruction TLB, 4-way LRU

• 64-entry L1 Data TLB, 4-way LRU

• 512-entry L2 Unified TLB, 4-way LRU

27

Virtual Memory meets Caching

Virtually vs. physically addressed caches

Virtually vs. physically tagged caches

28

Virtually Addressed Caching
Q: Can we remove the TLB from the critical path?

A: Virtually-Addressed Caches

CPU

TLB
Lookup

Virtually
Addressed

Cache

Mem Disk

PageTable
Lookup

29

Virtual vs. Physical Caches

CPU

Cache

SRAM

Memory

DRAM

addr

data

MMU

Cache

SRAM
MMU

CPU

Memory

DRAM

addr

data

Cache works on physical addresses

Cache works on virtual addresses

Q: What happens on context switch?
Q: What about virtual memory aliasing?
Q: So what’s wrong with physically addressed caches?

30

Indexing vs. Tagging
Physically-Addressed Cache
• slow: requires TLB (and maybe PageTable) lookup first

Virtually-Indexed, Virtually Tagged Cache
• fast: start TLB lookup before cache lookup finishes

• PageTable changes (paging, context switch, etc.)
  need to purge stale cache lines (how?)

• Synonyms (two virtual mappings for one physical page)
 could end up in cache twice (very bad!)

Virtually-Indexed, Physically Tagged Cache
• ~fast: TLB lookup in parallel with cache lookup

• PageTable changes  no problem: phys. tag mismatch

• Synonyms  search and evict lines with same phys. tag

Virtually-Addressed Cache

31

Typical Cache Setup

CPU
L2 Cache

SRAM

Memory

DRAM

addr

data

MMU

Typical L1: On-chip virtually addressed, physically tagged

Typical L2: On-chip physically addressed

Typical L3: On-chip …

L1 Cache

SRAM
TLB SRAM

32

Caches/TLBs/VM
Caches, Virtual Memory, & TLBs

Where can block be placed?

• Direct, n-way, fully associative

What block is replaced on miss?

• LRU, Random, LFU, …

How are writes handled?

• No-write (w/ or w/o automatic invalidation)

• Write-back (fast, block at time)

• Write-through (simple, reason about consistency)

33

Summary of Cache Design Parameters

L1 Paged Memory TLB

Size

(blocks)

1/4k to 4k 16k to 1M 64 to 4k

Size

(kB)

16 to 64 1M to 4G 2 to 16

Block

size (B)

16-64 4k to 64k 4-32

Miss

rates

2%-5% 10-4 to 10-5% 0.01% to 2%

Miss

penalty

10-25 10M-100M 100-1000

