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Administrivia 
Project3 available now 
• Design Doc due next week, Monday, April 16th 
• Schedule a Design Doc review Mtg now for next week 
• Whole project due Monday, April 23rd 
• Competition/Games night Friday, April 27th, 5-7pm 
 

HW5 is due today Tuesday, April 10th  
• Download updated version. Use updated version. 
• Online Survey due today. 

 
Lab3 was due yesterday Monday, April 9th 
 
Prelim3 is in two and a half weeks, Thursday, April 26th 
• Time and Location: 7:30pm in Olin Hall room 155 
• Old prelims are online in CMS 
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Goals for Today 
Virtual Memory 

• Address Translation 

• Pages, page tables, and memory mgmt unit 

• Paging 

• Role of Operating System 

• Context switches, working set, shared memory 

• Performance  

• How slow is it 

• Making virtual memory fast 

• Translation lookaside buffer (TLB) 

• Virtual Memory Meets Caching 
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Role of the Operating System 

Context switches, working set,  

shared memory 
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sbrk 
Suppose Firefox needs a new page of memory 

(1) Invoke the Operating System 

 void *sbrk(int nbytes); 

(2) OS finds a free page of physical memory 

• clear the page (fill with zeros) 

• add a new entry to Firefox’s PageTable 
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Context Switch 
Suppose Firefox is idle, but Skype wants to run 

(1) Firefox invokes the Operating System 

 int sleep(int nseconds); 

(2) OS saves Firefox’s registers, load skype’s 

• (more on this later) 

(3) OS changes the CPU’s Page Table Base Register 

• Cop0:ContextRegister / CR3:PDBR 

(4) OS returns to Skype 
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Shared Memory 
Suppose Firefox and Skype want to share data 

(1) OS finds a free page of physical memory 

• clear the page (fill with zeros) 

• add a new entry to Firefox’s PageTable 

• add a new entry to Skype’s PageTable 

– can be same or different vaddr 

– can be same or different page permissions 
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Multiplexing 
Suppose Skype needs a new page of memory, but Firefox is 

hogging it all 

(1) Invoke the Operating System 
 void *sbrk(int nbytes); 

(2) OS can’t find a free page of physical memory 
• Pick a page from Firefox instead (or other process) 

(3) If page table entry has dirty bit set… 
• Copy the page contents to disk 

(4) Mark Firefox’s page table entry as “on disk” 
• Firefox will fault if it tries to access the page 

(5)  Give the newly freed physical page to Skype 
• clear the page (fill with zeros) 

• add a new entry to Skyps’s PageTable 
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Paging Assumption 1 
OS multiplexes physical memory among processes 

• assumption # 1:  
processes use only a few pages at a time 

• working set = set of process’s recently actively pages 
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0x00000000 0x90000000 
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Reasons for Thrashing 

Q: What if working set is too large? 

Case 1: Single process using too many pages 

 

 

Case 2: Too many processes 

working set 

mem disk 

swapped P1 

working set 

mem disk 

swapped 

ws 

mem disk 

ws ws ws ws ws 
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Thrashing 
Thrashing b/c working set of process (or processes) 

greater than physical memory available 
– Firefox steals page from Skype 

– Skype steals page from Firefox 

• I/O (disk activity) at 100% utilization 

– But no useful work is getting done 

 

Ideal: Size of disk, speed of memory (or cache) 

Non-ideal: Speed of disk 
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Paging Assumption 2 
OS multiplexes physical memory among processes 

• assumption # 2:  
recent accesses predict future accesses 

• working set usually changes slowly over time 
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More Thrashing 
Q: What if working set changes rapidly or 

unpredictably? 

 

 

 

 

 

A: Thrashing b/c recent accesses don’t predict 
future accesses 
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Preventing Thrashing 
How to prevent thrashing? 

• User: Don’t run too many apps 

• Process: efficient and predictable mem usage 

• OS: Don’t over-commit memory, memory-aware 
scheduling policies, etc. 
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Performance 
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Performance 
Virtual Memory Summary 

PageTable for each process: 

• 4MB contiguous in physical memory, or multi-level, … 

• every load/store translated to physical addresses 

• page table miss = page fault 
load the swapped-out page and retry instruction, 
or kill program if the page really doesn’t exist, 
or tell the program it made a mistake 
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Page Table Review 
x86 Example: 2 level page tables, assume… 

32 bit vaddr, 32 bit paddr 
4k PDir, 4k PTables, 4k Pages 

 
Q:How many bits for a page number? 
A: 20 

Q: What is stored in each PageTableEntry? 

A: ppn, valid/dirty/r/w/x/… 

Q: What is stored in each PageDirEntry? 

A: ppn, valid/?/… 

Q: How many entries in a PageDirectory? 

A: 1024 four-byte PDEs 

Q: How many entires in each PageTable? 

A: 1024 four-byte PTEs 

PDE 

PTBR 
PDE 
PDE 

PDE 

PTE 
PTE 
PTE 

PTE 
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Page Table Example 
x86 Example: 2 level page tables, assume… 

32 bit vaddr, 32 bit paddr 
4k PDir, 4k PTables, 4k Pages 
PTBR = 0x10005000 (physical) 

Write to virtual address 0x7192a44c… 
Q: Byte offset in page?              PT Index?               PD Index? 

(1) PageDir is at 0x10005000, so… 
Fetch PDE from physical address 0x1005000+4*PDI 

• suppose we get {0x12345, v=1, …} 

(2) PageTable is at 0x12345000, so… 
Fetch PTE from physical address 0x12345000+4*PTI 

• suppose we get {0x14817, v=1, d=0, r=1, w=1, x=0, …} 

(3) Page is at 0x14817000, so… 
Write data to physical address 0x1481744c 
Also: update PTE with d=1 

PDE 

PTBR 
PDE 
PDE 

PDE 

PTE 
PTE 
PTE 

PTE 
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Performance 
Virtual Memory Summary 

PageTable for each process: 

• 4MB contiguous in physical memory, or multi-level, … 

• every load/store translated to physical addresses 

• page table miss: load a swapped-out page and retry 
instruction, or kill program 

Performance? 

• terrible: memory is already slow 
translation makes it slower 

Solution? 

• A cache, of course 
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Making Virtual Memory Fast 

The Translation Lookaside Buffer (TLB) 
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Translation Lookaside Buffer (TLB) 
Hardware Translation Lookaside Buffer (TLB) 

A small, very fast cache of recent address mappings 

• TLB hit: avoids PageTable lookup 

• TLB miss: do PageTable lookup, cache result for later 
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TLB Diagram 

V R W X D 
0 invalid 
1 0 
0 invalid 
0 invalid 
1 0 
0 0 
1 1 
0 invalid 

V R W X D tag ppn 

V 
0 invalid 
0 invalid 
0 invalid 
1 
0 invalid 
1 
1 
0 invalid 
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A TLB in the Memory Hierarchy 

(1) Check TLB for vaddr (~ 1 cycle) 

 

(2) TLB Miss: traverse PageTables for vaddr 

(3a) PageTable has valid entry for in-memory page 

• Load PageTable entry into TLB; try again (tens of cycles) 

(3b) PageTable has entry for swapped-out (on-disk) page 

• Page Fault: load from disk, fix PageTable, try again (millions of cycles) 

(3c) PageTable has invalid entry 

• Page Fault: kill process 

CPU 
TLB 

Lookup 
Cache 

Mem Disk 

PageTable 
Lookup 

  (2) TLB Hit 

• compute paddr, send to cache 
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TLB Coherency 
TLB Coherency: What can go wrong? 

A: PageTable or PageDir contents change 

• swapping/paging activity, new shared pages, … 

A: Page Table Base Register changes 

• context switch between processes 
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Translation Lookaside Buffers (TLBs) 
When PTE changes, PDE changes, PTBR changes…. 

Full Transparency: TLB coherency in hardware 

• Flush TLB whenever PTBR register changes  
[easy – why?] 

• Invalidate entries whenever PTE or PDE changes  
[hard – why?] 

TLB coherency in software 

If TLB has a no-write policy… 

• OS invalidates entry after OS modifies page tables 

• OS flushes TLB whenever OS does context switch 
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TLB Parameters 
TLB parameters (typical) 

• very small (64 – 256 entries), so very fast 

• fully associative, or at least set associative 

• tiny block size: why? 

 

Intel Nehalem TLB (example) 

• 128-entry L1 Instruction TLB, 4-way LRU 

• 64-entry L1 Data TLB, 4-way LRU 

• 512-entry L2 Unified TLB, 4-way LRU 
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Virtual Memory meets Caching 

Virtually vs. physically addressed caches 

Virtually vs. physically tagged caches 
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Virtually Addressed Caching 
Q: Can we remove the TLB from the critical path? 

A: Virtually-Addressed Caches 

 
CPU 

TLB 
Lookup 

Virtually 
Addressed 

Cache 

Mem Disk 

PageTable 
Lookup 
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Virtual vs. Physical Caches 
 

CPU 

 

Cache 

SRAM 

 

Memory 

DRAM 

 

addr 

data 

MMU 

Cache 

SRAM 
MMU 

 

CPU 

 

 

Memory 

DRAM 

 

addr 

data 

Cache works on physical addresses 

Cache works on virtual addresses 

Q: What happens on context switch? 
Q: What about virtual memory aliasing? 
Q: So what’s wrong with physically addressed caches? 
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Indexing vs. Tagging 
Physically-Addressed Cache 
• slow: requires TLB (and maybe PageTable) lookup first 

Virtually-Indexed, Virtually Tagged Cache 
• fast: start TLB lookup before cache lookup finishes 

• PageTable changes (paging, context switch, etc.) 
  need to purge stale cache lines (how?) 

• Synonyms (two virtual mappings for one physical page) 
 could end up in cache twice (very bad!) 

Virtually-Indexed, Physically Tagged Cache 
• ~fast: TLB lookup in parallel with cache lookup 

• PageTable changes  no problem: phys. tag mismatch 

• Synonyms  search and evict lines with same phys. tag 

Virtually-Addressed Cache 



31 

Typical Cache Setup 

CPU 
L2 Cache 

SRAM 

 

Memory 

DRAM 

 

addr 

data 

MMU 

Typical L1: On-chip virtually addressed, physically tagged 

Typical L2: On-chip physically addressed 

Typical L3: On-chip …  

L1 Cache 

SRAM 
TLB SRAM 
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Caches/TLBs/VM 
Caches, Virtual Memory, & TLBs 

Where can block be placed? 

• Direct, n-way, fully associative 

What block is replaced on miss? 

• LRU, Random, LFU, …  

How are writes handled? 

• No-write (w/ or w/o automatic invalidation) 

• Write-back (fast, block at time) 

• Write-through (simple, reason about consistency) 
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Summary of Cache Design Parameters 

L1 Paged Memory TLB 

Size 

(blocks) 

1/4k to 4k 16k to 1M 64 to 4k 

Size 

(kB) 

16 to 64 1M to 4G 2 to 16 

Block 

size (B) 

16-64 4k to 64k 4-32 

Miss 

rates 

2%-5% 10-4 to 10-5% 0.01% to 2% 

Miss 

penalty 

10-25 10M-100M 100-1000 


