CS 3410: Computer System Organization and Programming

Hakim Weatherspoon
Spring 2012
Computer Science
Cornell University
Computer System Organization

• The most amazing and likely to be most long-lived invention of the 1800’s was...
Computer Organization

• The most amazing and likely to be most long-lived invention of the 1800’s was...

 – (a) The steam engine?
 – (b) The lightning rod?
 – (c) The carbonated beverage?
 – (d) All of the above
 – (e) None
Computer Organization

- The most amazing and likely to be most long-lived invention of the 1800’s was...

THE ELECTRIC SWITCH
Basic Building Blocks: A switch

- A switch is a simple device that can act as a conductor or isolator.
- Can be used for amazing things…
In what language do computers think?

- (a) Java
- (b) C/C++
- (c) Matlab
- (c) Python
- (d) Binary Digits
Basic Building Blocks: Switches

- Either (OR)
- Both (AND)
- But requires mechanical force
Basic Building Blocks: Transistors

• Solid-state switch
 – The most amazing invention of the 1900s

• PNP and NPN
Basic Building Blocks: NPN Transistors

- Semi-conductor

- Connect E to C when base = 1
P and N Transistors

- **PNP Transistor**
 - Connect E to C when base = 0

- **NPN Transistor**
 - Connect E to C when base = 1

© Hakim Weatherspoon, Computer Science, Cornell University
Inverter

- Function: NOT
- Called an inverter
- Symbol:

Truth table

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Useful for taking the inverse of an input

- CMOS: complementary-symmetry metal–oxide–semiconductor
NAND Gate

- Function: NAND
- Symbol:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
NOR Gate

- Function: NOR
- Symbol:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

© Hakim Weatherspoon, Computer Science, Cornell University
Building Functions

• NOT:

• AND:

• OR:

• NAND and NOR are universal
 – Can implement any function with NAND or just NOR gates
 – useful for manufacturing
Then and Now

- The first transistor
 - on a workbench at AT&T Bell Labs in 1947
 - Bardeen, Brattain, and Shockley

- An Intel Westmere
 - 1.17 billion transistors
 - 240 square millimeters
 - Six processing cores

http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/
Moore's Law

The number of transistors integrated on a single die will double every 24 months...
– Gordon Moore, Intel co-founder, 1965

Amazingly Visionary

1971 – 2300 transistors – 1MHz – 4004
1990 – 1M transistors – 50MHz – i486
2001 – 42M transistors – 2GHz – Xeon
2004 – 55M transistors – 3GHz – P4
2007 – 290M transistors – 3GHz – Core 2 Duo
2009 – 731M transistors – 2GHz – Nehalem
Course Objective

• Bridge the gap between hardware and software
 – How a processor works
 – How a computer is organized

• Establish a foundation for building higher-level applications
 – How to understand program performance
 – How to understand where the world is going
Announcements: How class organized

• Instructor: Hakim Weatherspoon
 (hweather@cs.cornell.edu)

• Lecture:
 – Tu/Th 1:25-2:40
 – Hollister B14

• Lab Sections:
 – Carpenter 235 (Red Room)
Who am I?

• Prof. Hakim Weatherspoon
 – (Hakim means Doctor, wise, or prof. in Arabic)
 – Background in Education
 ▪ Undergraduate University of Washington
 • Played Varsity Football
 – Some teammates collectively make $100’s of millions
 – I teach!!!
 ▪ Graduate University of California, Berkeley
 • Some class mates collectively make $100’s of millions
 • I teach!!!
 – Background in Operating Systems
 ▪ Peer-to-Peer Storage
 • Antiquity project - Secure wide-area distributed system
 • OceanStore project – Store your data for 1000 years
 ▪ Network overlays
 • Bamboo and Tapestry – Find your data around globe
 ▪ Tiny OS
 • Early adopter in 1999, but ultimately chose P2P direction

© Hakim Weatherspoon, Computer Science, Cornell University
Who am I?

- Cloud computing/storage
 - Optimizing a global network of data centers
 - Cornell National λ-Rail Rings testbed
 - Software Defined Network Adapter
 - Energy: KyotoFS/SMFS

- Antiquity: built a global-scale storage system
Course Staff

• cs3410-staff-l@cs.cornell.edu

• Lecture/Homwork TA’s
 – Colin Ponce (cponce@cs.cornell.edu) (lead)
 – Anish Ghulati (ag795@cornell.edu)
 – Ming Pan (mp492@cornell.edu)

• Lab TAs
 – Han Wang (hwang@cs.cornell.edu) (lead)
 – Zhefu Jiang (zj46@cs.cornell.edu)

• Lab Undergraduate consultants
 – Doo San Baik (db478@cornell.edu)
 – Erluo Li (el378@cornell.edu)
 – Jason Zhao (jlz27@cornell.edu)
 – Peter Tseng (pht24@cornell.edu) (lead)
 – Roman Averbukh (raa89@cornell.edu)
 – Scott Franklin (sdf47@cornell.edu)

Administrative Assistant:
 – Randy Hess (rbhess@cs.cornell.edu)
Book

• Computer Organization and Design
 – The Hardware/Software Interface

• David Patterson, John Hennessy
 – Get the 4th Edition Revised
Pre-requisites and scheduling

• CS 2110 is required
 – Must have satisfactorily completed CS 2110
 – *Cannot take CS 2110 concurrently with CS 3410*

• CS 3420 (ECE 3140)
 – Take either CS 3410 *or* CS 3420
 ▪ both satisfy CS and ECE requirements
 – *However, Need ENGRD 2300 to take CS 3420*

• CS 3110
 – Not advised to take CS 3110 and 3410 together
Grading

• Lab (45-50%)
 – 4-5 Individual Labs (15-20%)
 – 4 Group Projects (30-35%)

• Lecture (45-50%)
 – 3 Prelims (35-40%)
 – Homework (10%)

• Participation/Discretionary (5%)

© Hakim Weatherspoon, Computer Science, Cornell University
Grading

• Regrade policy
 – Submit written request to lead TA, and lead TA will pick a different grader
 – Submit another written request, lead TA will regrade directly
 – Submit yet another written request for professor to regrade.

• Late Policy
 – Each person has a total of four “slip days”
 – Max of two slip days for any individual assignment
 – For projects, slip days are deducted from all partners
 – 20% deducted per day late after slip days are exhausted
Administrivia

- http://www.cs.cornell.edu/courses/cs3410/2012sp
 - Office Hours / Consulting Hours
 - Lecture slides & schedule
 - Logisim
 - CSUG lab access (esp. second half of course)

- Lab Sections (start *today*)
 - Labs are separate than lecture and homework
 - Bring laptop to Labs (optional)
Administrivia

- http://www.cs.cornell.edu/courses/cs3410/2012sp
 - Office Hours / Consulting Hours
 - Lecture slides & schedule
 - Logisim
 - CSUG lab access (esp. second half of course)

- Lab Sections (start **today**)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>2:55 – 4:10pm</td>
<td>Carpenter Hall 235 (Red Room)</td>
</tr>
<tr>
<td>W</td>
<td>3:35 – 4:50pm</td>
<td>Carpenter Hall 235 (Red Room)</td>
</tr>
<tr>
<td>W</td>
<td>7:30—8:45pm</td>
<td>Carpenter Hall 235 (Red Room)</td>
</tr>
<tr>
<td>R</td>
<td>11:40 – 12:55pm</td>
<td>Carpenter Hall 235 (Red Room)</td>
</tr>
<tr>
<td>R</td>
<td>2:55 – 4:10pm</td>
<td>Carpenter Hall 235 (Red Room)</td>
</tr>
<tr>
<td>F</td>
<td>2:55 – 4:10pm</td>
<td>Carpenter Hall 235 (Red Room)</td>
</tr>
</tbody>
</table>

- Labs are separate than lecture and homework
- Bring laptop to Labs
- **This** week: intro to logisim and building an adder
Communication

• Email
 – cs3410-staff-l@cs.cornell.edu
 – The email alias goes to me and the TAs, not to whole class

• Assignments
 – CMS: http://cms.csuglab.cornell.edu

• Newsgroup
 – For students

• iClicker
 – http://atcsupport.cit.cornell.edu/pollsrvc/
Lab Sections & Projects

• Lab Sections start **this** week
 – Intro to logisim and building an adder

• Labs Assignments
 – Individual
 – One week to finish (usually Monday to Monday)

• Projects
 – two-person teams
 – Find partner in same section
Academic Integrity

• All submitted work must be your own
 – OK to study together, but do not share soln’s
 – Cite your sources

• Project groups submit joint work
 – Same rules apply to projects at the group level
 – Cannot use of someone else’s soln

• Closed-book exams, no calculators

• Stressed? Tempted? Lost?
 • Come see me before due date!

Plagiarism in any form will not be tolerated
Why do CS Students Need Transistors?
Why do CS Students Need Transistors?

• Functionality and Performance
Why do CS Students Need Transistors?

• To be better Computer Scientists and Engineers
 – Abstraction: simplifying complexity
 – How is a computer system organized? How do I build it?
 – How do I program it? How do I change it?
 – How does its design/organization effect performance?
Computer System Organization
Computer System Organization

Computer System = ?

Input +
Output +
Memory +
Datapath +
Control

CPU

Registers

Video

Network

USB

Keyboard

Mouse

Serial

Audio

Memory

Disk

© Hakim Weatherspoon, Computer Science, Cornell University
Compilers & Assemblers

C

```
int x = 10;
x = 2 * x + 15;
```

MIPS assembly language

```
addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15
```

MIPS machine language

```
001000000000010100100000000001010
000000000000001010010101000010000
00100000101001010000000000001111
```

compiler

assembler
Instruction Set Architecture

• ISA
 – abstract interface between hardware and the lowest level software

 – user portion of the instruction set plus the operating system interfaces used by application programmers
Basic Computer System

• A processor executes instructions
 – Processor has some internal state in storage elements (registers)

• A memory holds instructions and data
 – von Neumann architecture: combined inst and data

• A bus connects the two
How to Design a Simple Processor

memory

inst

32

00

pc

new pc calculation

register file

control

00: addi r5, r0, 10
04: multi r5, r5, 2
08: addi r5, r5, 15
Inside the Processor

- AMD Barcelona: 4 processor cores

Figure from Patterson & Hennesssy, Computer Organization and Design, 4th Edition
How to Program the Processor: MIPS R3000 ISA

- Instruction Categories
 - Load/Store
 - Computational
 - Jump and Branch
 - Floating Point
 - coprocessor
 - Memory Management

 Registers

R0 - R31
PC
HI
LO

<table>
<thead>
<tr>
<th>OP</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>sa</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP</td>
<td>rs</td>
<td>rt</td>
<td>immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP</td>
<td></td>
<td></td>
<td>jump target</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications

• Everything these days!
 – Phones, cars, televisions, games, computers,…
Example 3: New Devices

- **Xilinx FPGA**
- **NVidia GPU**
- **Berkeley mote**
Covered in this course

Application

Operating System

Compiler Firmware

Memory system Instr. Set Proc. I/O system

Datapath & Control

Digital Design

Circuit Design

Instruction Set Architecture

© Hakim Weatherspoon, Computer Science, Cornell University
Reflect

Why take this course?

- Basic knowledge needed for *all* other areas of CS: operating systems, compilers, ...
- Levels are not independent
 hardware design ↔ software design ↔ performance
- Crossing boundaries is hard but important
device drivers
- Good design techniques
 abstraction, layering, pipelining, parallel vs. serial, ...
- Understand where the world is going