
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Atomic Instructions

P&H Chapter 2.11

2

Synchronization

Synchronization techniques

clever code
• must work despite adversarial scheduler/interrupts

• used by: hackers

• also: noobs

disable interrupts
• used by: exception handler, scheduler, device drivers, …

disable preemption
• dangerous for user code, but okay for some kernel code

mutual exclusion locks (mutex)
• general purpose, except for some interrupt-related

cases

3

Mutexes

Q: How to implement critical section in code?
A: Lots of approaches….
Mutual Exclusion Lock (mutex)
lock(m): wait till it becomes free, then lock it
unlock(m): unlock it

safe_increment() {
pthread_mutex_lock(m);
hits = hits + 1;
pthread_mutex_unlock(m)

}

4

Hardware Support for Synchronization

5

Atomic Test and Set

Mutex implementation

• Suppose hardware has atomic test-and-set

Hardware atomic equivalent of…
int test_and_set(int *m) {
old = *m;
*m = 1;
return old;

}

6

Using test-and-set for mutual exclusion

Use test-and-set to implement mutex / spinlock / crit. sec.

int m = 0;

...

while (test_and_set(&m)) { /* skip */ };

m = 0;

7

Spin waiting

Also called: spinlock, busy waiting, spin waiting, …

• Efficient if wait is short

• Wasteful if wait is long

Possible heuristic:

• spin for time proportional to expected wait time

• If time runs out, context-switch to some other thread

8

Alternative Atomic Instructions

Other atomic hardware primitives

- test and set (x86)

- atomic increment (x86)

- bus lock prefix (x86)

9

Alternative Atomic Instructions

Other atomic hardware primitives

- test and set (x86)

- atomic increment (x86)

- bus lock prefix (x86)

- compare and exchange (x86, ARM deprecated)

- linked load / store conditional
(MIPS, ARM, PowerPC, DEC Alpha, …)

10

mutex from LL and SC

Linked load / Store Conditional

mutex_lock(int *m) {

again:

LL t0, 0(a0)

BNE t0, zero, again

ADDI t0, t0, 1

SC t0, 0(a0)

BEQ t0, zero, again

}

11

Using synchronization primitives to build

concurrency-safe datastructures

12

Broken invariants

Access to shared data must be synchronized

• goal: enforce datastructure invariants

// invariant:
// data is in A[h … t-1]

char A[100];

int h = 0, t = 0;

// writer: add to list tail

void put(char c) {

A[t] = c;

t++;

}

// reader: take from list head

char get() {

while (h == t) { };

char c = A[h];

h++;

return c;

}

13

Protecting an invariant

Rule of thumb: all updates that can affect
invariant become critical sections

// invariant: (protected by m)
// data is in A[h … t-1]

pthread_mutex_t *m = pthread_mutex_create();

char A[100];

int h = 0, t = 0;

// writer: add to list tail

void put(char c) {

pthread_mutex_lock(m);

A[t] = c;

t++;

pthread_mutex_unlock(m);

}

// reader: take from list head

char get() {

pthread_mutex_lock(m);

char c = A[h];

h++;

pthread_mutex_unlock(m);

return c;

}

14

Guidelines for successful mutexing

Insufficient locking can cause races

• Skimping on mutexes? Just say no!

Poorly designed locking can cause deadlock

• know why you are using mutexes!

• acquire locks in a consistent order to avoid cycles

• use lock/unlock like braces (match them lexically)

– lock(&m); …; unlock(&m)

– watch out for return, goto, and function calls!

– watch out for exception/error conditions!

P1: lock(m1);
lock(m2);

P2: lock(m2);
lock(m1);

15

Cache Coherency

causes yet more trouble

16

Remember: Cache Coherence

Recall: Cache coherence defined...

Informal: Reads return most recently written value

Formal: For concurrent processes P1 and P2

• P writes X before P reads X (with no intervening writes)
 read returns written value

• P1 writes X before P2 reads X
 read returns written value

• P1 writes X and P2 writes X
 all processors see writes in the same order

– all see the same final value for X

17

Relaxed consistency implications

Ideal case: sequential consistency

• Globally: writes appear in interleaved order

• Locally: other core’s writes show up in program order

In practice: not so much…

• write-back caches sequential consistency is tricky

• writes appear in semi-random order

• locks alone don’t help

* MIPS has sequential consistency; Intel does not

18

Acquire/release

Memory Barriers and Release Consistency
• Less strict than sequential consistency; easier to build

One protocol:
• Acquire: lock, and force subsequent accesses after
• Release: unlock, and force previous accesses before

P1: ...
acquire(m);
A[t] = c;
t++;
release(m);

P2: ...
acquire(m);
A[t] = c;
t++;
unlock(m);

Moral: can’t rely on sequential consistency
(so use synchronization libraries)

19

Are Locks + Barriers enough?

20

Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

21

Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
acquire(L);
while (h == f) { };
char c = A[h];
h++;
release(L);
return c;

}

char get() {
while (h == f) { };
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

22

Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
acquire(L);
while (h == f) { };
char c = A[h];
h++;
release(L);
return c;

}

23

Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
acquire(L);
while (h == f) { };
char c = A[h];
h++;
release(L);
return c;

}

char get() {
while (h == f) { };
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
do {

acquire(L);
empty = (h == f);
if (!empty) {

c = A[h];
h++;

}
release(L);

} while (empty);
return c;

}

24

Language-level Synchronization

25

Condition variables

Use [Hoare] a condition variable to wait for a
condition to become true (without holding lock!)

wait(m, c) :

• atomically release m and sleep, waiting for condition c

• wake up holding m sometime after c was signaled

signal(c) : wake up one thread waiting on c

broadcast(c) : wake up all threads waiting on c

POSIX (e.g., Linux): pthread_cond_wait,
pthread_cond_signal, pthread_cond_broadcast

26

Using a condition variable

wait(m, c) : release m, sleep until c, wake up holding m

signal(c) : wake up one thread waiting on c

char get() {

lock(m);

while (t == h)

wait(m, not_empty);

char c = A[h];

h = (h+1) % n;

unlock(m);

signal(not_full);

return c;

}

cond_t *not_full = ...;
cond_t *not_empty = ...;
mutex_t *m = ...;

void put(char c) {
lock(m);
while ((t-h) % n == 1)
wait(m, not_full);

A[t] = c;
t = (t+1) % n;
unlock(m);
signal(not_empty);

}

27

Using a condition variable

wait(m, c) : release m, sleep until c, wake up holding m

signal(c) : wake up one thread waiting on c

char get() {

lock(m);

while (t == h)

wait(m, not_empty);

char c = A[h];

h = (h+1) % n;

unlock(m);

signal(not_full);

return c;

}

cond_t *not_full = ...;
cond_t *not_empty = ...;
mutex_t *m = ...;

void put(char c) {
lock(m);
while ((t-h) % n == 1)
wait(m, not_full);

A[t] = c;
t = (t+1) % n;
unlock(m);
signal(not_empty);

}

28

Monitors

A Monitor is a concurrency-safe datastructure,
with…

• one mutex

• some condition variables

• some operations

All operations on monitor acquire/release mutex

• one thread in the monitor at a time

Ring buffer was a monitor

Java, C#, etc., have built-in support for monitors

29

Java concurrency

Java objects can be monitors

• “synchronized” keyword locks/releases the mutex

• Has one (!) builtin condition variable

– o.wait() = wait(o, o)

– o.notify() = signal(o)

– o.notifyAll() = broadcast(o)

• Java wait() can be called even when mutex is not held.
Mutex not held when awoken by signal(). Useful?

30

More synchronization mechanisms

Lots of synchronization variations…
(can implement with mutex and condition vars.)

Reader/writer locks

• Any number of threads can hold a read lock

• Only one thread can hold the writer lock

Semaphores

• N threads can hold lock at the same time

Message-passing, sockets, queues, ring buffers, …

• transfer data and synchronize

31

Summary

Hardware Primitives: test-and-set, LL/SC, barrier, ...

… used to build …

Synchronization primitives: mutex, semaphore, ...

… used to build …

Language Constructs: monitors, signals, ...

