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Synchronization

Synchronization techniques

clever code 
• must work despite adversarial scheduler/interrupts

• used by: hackers

• also: noobs

disable interrupts
• used by: exception handler, scheduler, device drivers, …

disable preemption
• dangerous for user code, but okay for some kernel code

mutual exclusion locks (mutex)
• general purpose, except for some interrupt-related 

cases
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Mutexes

Q: How to implement critical section in code?
A: Lots of approaches….
Mutual Exclusion Lock (mutex)
lock(m): wait till it becomes free, then lock it
unlock(m): unlock it

safe_increment() {
pthread_mutex_lock(m);
hits = hits + 1;
pthread_mutex_unlock(m)

}
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Hardware Support for Synchronization
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Atomic Test and Set

Mutex implementation

• Suppose hardware has atomic test-and-set

Hardware atomic equivalent of…
int test_and_set(int *m) {
old = *m;
*m = 1;
return old;

}
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Using test-and-set for mutual exclusion

Use test-and-set to implement mutex / spinlock / crit. sec.

int m = 0;

...

while (test_and_set(&m)) { /* skip */ };

m = 0;
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Spin waiting

Also called: spinlock, busy waiting, spin waiting, …

• Efficient if wait is short

• Wasteful if wait is long

Possible heuristic:

• spin for time proportional to expected wait time

• If time runs out, context-switch to some other thread
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Alternative Atomic Instructions

Other atomic hardware primitives

- test and set (x86)

- atomic increment (x86)

- bus lock prefix (x86)
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Alternative Atomic Instructions

Other atomic hardware primitives

- test and set (x86)

- atomic increment (x86)

- bus lock prefix (x86)

- compare and exchange (x86, ARM deprecated)

- linked load / store conditional
(MIPS, ARM, PowerPC, DEC Alpha, …)
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mutex from LL and SC

Linked load / Store Conditional

mutex_lock(int *m) {

again:

LL t0, 0(a0)

BNE t0, zero, again

ADDI t0, t0, 1

SC t0, 0(a0)

BEQ t0, zero, again

}
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Using synchronization primitives to build

concurrency-safe datastructures



12

Broken invariants

Access to shared data must be synchronized

• goal: enforce datastructure invariants

// invariant: 
// data is in A[h … t-1]

char A[100];

int h = 0, t = 0;

// writer: add to list tail

void put(char c) {

A[t] = c;

t++;

}

// reader: take from list head

char get() {

while (h == t) { };

char c = A[h];

h++;

return c;

}
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Protecting an invariant

Rule of thumb: all updates that can affect
invariant become critical sections

// invariant: (protected by m)
// data is in A[h … t-1]

pthread_mutex_t *m = pthread_mutex_create();

char A[100];

int h = 0, t = 0;

// writer: add to list tail

void put(char c) {

pthread_mutex_lock(m);

A[t] = c;

t++;

pthread_mutex_unlock(m);

}

// reader: take from list head

char get() {

pthread_mutex_lock(m);

char c = A[h];

h++;

pthread_mutex_unlock(m);

return c;

}
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Guidelines for successful mutexing

Insufficient locking can cause races

• Skimping on mutexes? Just say no!

Poorly designed locking can cause deadlock

• know why you are using mutexes!

• acquire locks in a consistent order to avoid cycles

• use lock/unlock like braces (match them lexically)

– lock(&m); …; unlock(&m)

– watch out for return, goto, and function calls!

– watch out for exception/error conditions!

P1: lock(m1);
lock(m2);

P2: lock(m2);
lock(m1);
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Cache Coherency

causes yet more trouble
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Remember: Cache Coherence

Recall: Cache coherence defined...

Informal: Reads return most recently written value

Formal: For concurrent processes P1 and P2

• P writes X before P reads X (with no intervening writes)
 read returns written value

• P1 writes X before P2 reads X 
 read returns written value

• P1 writes X and P2 writes X
 all processors see writes in the same order

– all see the same final value for X
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Relaxed consistency implications

Ideal case: sequential consistency

• Globally: writes appear in interleaved order

• Locally: other core’s writes show up in program order

In practice: not so much…

• write-back caches  sequential consistency is tricky

• writes appear in semi-random order

• locks alone don’t help

* MIPS has sequential consistency; Intel does not
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Acquire/release

Memory Barriers and Release Consistency 
• Less strict than sequential consistency; easier to build

One protocol:
• Acquire: lock, and force subsequent accesses after
• Release: unlock, and force previous accesses before

P1: ...
acquire(m);
A[t] = c;
t++;
release(m);

P2: ...
acquire(m);
A[t] = c;
t++;
unlock(m);

Moral: can’t rely on sequential consistency
(so use synchronization libraries)
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Are Locks + Barriers enough?
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Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}
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Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
acquire(L);
while (h == f) { };
char c = A[h];
h++;
release(L);
return c;

}

char get() {
while (h == f) { };
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}
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Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
acquire(L);
while (h == f) { };
char c = A[h];
h++;
release(L);
return c;

}
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Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

• ideal: don’t busy wait… go to sleep instead

char get() {
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
acquire(L);
while (h == f) { };
char c = A[h];
h++;
release(L);
return c;

}

char get() {
while (h == f) { };
acquire(L);
char c = A[h];
h++;
release(L);
return c;

}

char get() {
do {

acquire(L);
empty = (h == f);
if (!empty) {

c = A[h];
h++;

}
release(L);

} while (empty);
return c;

}
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Language-level Synchronization



25

Condition variables

Use [Hoare] a condition variable to wait for a 
condition to become true (without holding lock!)

wait(m, c) : 

• atomically release m and sleep, waiting for condition c

• wake up holding m sometime after c was signaled

signal(c) : wake up one thread waiting on  c

broadcast(c) : wake up all threads waiting on  c

POSIX (e.g., Linux): pthread_cond_wait, 
pthread_cond_signal, pthread_cond_broadcast
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Using a condition variable

wait(m, c) : release m, sleep until c, wake up holding m

signal(c) : wake up one thread waiting on c

char get() {

lock(m);

while (t == h)

wait(m, not_empty);

char c = A[h];

h = (h+1) % n;

unlock(m);

signal(not_full);

return c;

}

cond_t *not_full = ...;
cond_t *not_empty = ...;
mutex_t *m = ...;

void put(char c) {
lock(m);
while ((t-h) % n == 1) 
wait(m, not_full);

A[t] = c;
t = (t+1) % n;
unlock(m);
signal(not_empty);

}
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Using a condition variable

wait(m, c) : release m, sleep until c, wake up holding m

signal(c) : wake up one thread waiting on c

char get() {

lock(m);

while (t == h)

wait(m, not_empty);

char c = A[h];

h = (h+1) % n;

unlock(m);

signal(not_full);

return c;

}

cond_t *not_full = ...;
cond_t *not_empty = ...;
mutex_t *m = ...;

void put(char c) {
lock(m);
while ((t-h) % n == 1) 
wait(m, not_full);

A[t] = c;
t = (t+1) % n;
unlock(m);
signal(not_empty);

}
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Monitors

A Monitor is a concurrency-safe datastructure, 
with…

• one mutex

• some condition variables

• some operations

All operations on monitor acquire/release mutex

• one thread in the monitor at a time

Ring buffer was a monitor

Java, C#, etc., have built-in support for monitors
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Java concurrency

Java objects can be monitors

• “synchronized” keyword locks/releases the mutex

• Has one (!) builtin condition variable

– o.wait() = wait(o, o)

– o.notify() = signal(o)

– o.notifyAll() = broadcast(o)

• Java wait() can be called even when mutex is not held. 
Mutex not held when awoken by signal(). Useful?
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More synchronization mechanisms

Lots of synchronization variations…
(can implement with mutex and condition vars.)

Reader/writer locks

• Any number of threads can hold a read lock

• Only one thread can hold the writer lock

Semaphores

• N threads can hold lock at the same time

Message-passing, sockets, queues, ring buffers, …

• transfer data and synchronize



31

Summary

Hardware Primitives: test-and-set, LL/SC, barrier, ...

… used to build …

Synchronization primitives: mutex, semaphore, ...

… used to build …

Language Constructs: monitors, signals, ...


