Parallel Programming and
Synchronization

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

P&H Chapter 2.11

Multi-core is a reality...

... but how do we write multi-core safe code?

Cache Coherence:
Necessary, but not Sufficient

Shared Memory Multiprocessor (SMP)

Shared Memory Multiprocessors

e Suppose CPU cores share physical address space

e Assume write-through caches (write-back is worse!)

CoreO

Corel

Cache

Cache

!

!

CoreN

Cache

!

Interconnect

!

Memory

!

/0

What could possibly go wrong?

X++

Core0 Corel Core3
! !)
Interconnect

) !

/0

Cache Coherence Problem

read X

read x

Coherence Define

Cache coherence defined...
Informal: Reads return most recently written value

Formal: For concurrent processes P, and P,

e P writes X before P reads X (with no intervening writes)
—> read returns written value

* P, writes X before P, reads X
—> read returns written value

* P, writes X and P, writes X
— all processors see writes in the same order

— all see the same final value for X

Recall: Snooping for Hardware Cache Coherence
* All caches monitor bus and all other caches
* Bus read: respond if you have dirty data
* Bus write: update/invalidate your copy of data

* In reality: very complicated, lots of corner cases

CoreO Corel| -=c-- CoreN
)))
Snoople>{Cache| |Snoople>jCache Snoople>{Cache
{ { { { { {
Interconnect

! !

Memory /0

Is cache coherence enough?
I:)1

X=Xx+1

— happens even on single-core
(context switches!)

X=x+1

nce sufficient?

Programs and Processes

sssssssss

How do we cope with lots of activity?

Is[lwww | lemacs

nfsd lpr
OS

Simplicity? Separation into processes
Reliability? Isolation (e.g. virtual memory)
Speed? Program-level parallelism (e.g. during 1/0)

10

Process and Program

Process Program

OS abstraction of a running “Blueprint” for a process
computation e Passive entity (bits on disk)
* The unit of execution e Code + static data
* The unit of scheduling

* Execution state
+ address space

From process perspective
e avirtual CPU
e some virtual memory

e avirtual keyboard, screen, ...

11

Role of the OS

Role of the OS

Context Switching
* Provides illusion that every process owns a CPU

Virtual Memory
* Provides illusion that process owns some memory

Device drivers & system calls
* Provides illusion that process owns a keyboard, ...

To do:
How to start a process?
How do processes communicate / coordinate?

12

Creating Processes:
Fork

13

Q: How to create a process? Double click?

After boot, OS starts the first process...
* e.g.init

...which in turn creates other processes
e parent / child = the process tree

14

Processes Under UNIX

Init is a special case. For others...
Q: How does parent process create child process?
A: fork() system call

e creates new address space
(Copy-On-Write duplicate of parent’s)

e creates new execution state in OS process table
(Exact copy of parent’s)

e returns child’s id to parent
(context[parent id]->v0 = child id)

* returns zero to child
(context[child id]->veo

0)

Wait. what?
* int fork() returns TWICE!

15

Example

main(int ac, char **av) {
int x = getpid(); // get current process ID from 0S
char *hi = av[1]; // get greeting from command line
printf(“I’°m process %d\n”, x);
int id = fork();
if (id == 9)
printf(“%s from %d\n”, hi, getpid());
else
printf(“%s from %d, child is %d\n”, hi, getpid(), id);
}
$ gcc -o strange strange.c
$./strange “Hi”
I°’m process 23511
Hi from 23512
Hi from 23511, child is 23512

16

Inter-process Communication

Parent can pass information to child
* In fact, all parent data is passed to child

e But isolated from then on...
— C-O-W ensures they don’t see each other’s changes

Q: How to continue communicating?
A: Invent OS “IPC channels” : send(msg), recv(), ...

A: Shared (Virtual) Memory!
e Before fork: allocate pages, mark as “shared”
* During fork: don’t set copy-on-write for these pages
o After fork: either can read/write

17

Processes and Threads

18

Processes are heavyweight

Parallel programming with processes:

* They share almost everything
code, shared mem, open files, filesystem privileges, ...

e Pagetables will be almost identical
* Differences: PC, registers, stack

Recall: process = execution context + address space

19

Process

OS abstraction of a running
computation
* The unit of execution
* The unit of scheduling

* Execution state
+ address space

From process perspective
e avirtual CPU

* some virtual memory

e avirtual keyboard, screen, ...

Processes and Threads

Thread

OS abstraction of a single
thread of control
* The unit of scheduling
* Livesin one single process
From thread perspective

e one virtual CPU core on a
virtual multi-core machine

20

Multithreaded Processes

registers ||| registers ||| registers

stack stack stack

single-threaded multithreaded

21

Threads

#include <pthread.h>
int counter = 0;

void PrintHello(int arg) {

printf(“I’m thread %d, counter is %d\n”, arg, counter++);
. do some work ...
pthread exit(NULL);

int main () {
for (t = 0; t < 4; t++) {
printf(“in main: creating thread %d\n", t);
pthread create(NULL, NULL, PrintHello, t);

}
pthread_exit(NULL);

22

in main: creating thread
I°’m thread 0, counter is
in main: creating thread
I°m thread 0, counter is
in main: creating thread
in main: creating thread
I°m thread 3, counter is
I°’m thread 2, counter 1is

If processes?

w NN W N O P OO

Threads versus For

23

Example: Apache web server

Each client request handled by a separate thread
(in parallel)
 Some shared state: hit counter, ...

Thread 52 Thread 205
read hits read hits
addi addi

write hits write hits

(look familiar?)

Timing-dependent failure = race condition
* hard to reproduce = hard to debug

24

Programming with threads

Within a thread: execution is sequential
Between threads?

* No ordering or timing guarantees

* Might even run on different cores at the same time

Problem: hard to program, hard to reason about
e Behavior can depend on subtle timing differences
* Bugs may be impossible to reproduce

Cache coherency isn’t sufficient...

Need explicit synchronization to
make sense of concurrency!

25

Managing Concurrency
Races, Critical Sections, and Mutexes

26

Concurrency Goals
Liveness
* Make forward progress
Efficiency
* Make good use of resources
Fairness
* Fair allocation of resources between threads
Correctness

* Threads are isolated (except when they aren’t)

27

Race Condition

Timing-dependent error when
accessing shared state

* Depends on scheduling happenstance
... 1.e. who wins “race” to the store instruction?

Concurrent Program Correctness =
all possible schedules are safe

* Must consider every possible permutation
* |In other words...

... the scheduler is your adversary

28

What if we can designate parts of the execution as
critical sections
* Rule: only one thread can be “inside”

Thread 52 Thread 205
read hits read hits
addi addi

write hits write hits

29

Interrupt Disable

Q: How to implement critical section in code?
A: Lots of approaches....

Disable interrupts?

CSEnter() = disable interrupts (including clock)
CSExit() = re-enable interrupts

Works for many kernel data-structures
* but only within a single core: why?

Very bad idea for user code
(important events are delayed... forever?)

30

Preemption Disable

Q: How to implement critical section in code?
A: Lots of approaches....

Modify OS scheduler?

CSEnter() = syscall to disable context switches
CSExit() = syscall to re-enable context switches

Doesn’t work if interrupts are part of the problem
(e.g. won’t work for many kernel datastructures)

Usually a bad idea anyway
(caller forgets to CSExit? Or waits a long time?)

31

Q: How to implement critical section in code?
A: Lots of approaches....

Mutual Exclusion Lock (mutex)

acquire(m): wait till it becomes free, then take it
release(m): free it

apache _got hit() {
pthread mutex_ lock(m);
hits = hits + 1;
pthread mutex_unlock(m)

32

Q: How to implement mutexes?
A: next time...

33

