
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Parallel Programming and
Synchronization

P&H Chapter 2.11

2

Multi-core is a reality…

… but how do we write multi-core safe code?

3

Cache Coherence:

Necessary, but not Sufficient

4

Shared Memory Multiprocessors

Shared Memory Multiprocessor (SMP)

• Suppose CPU cores share physical address space

• Assume write-through caches (write-back is worse!)

Core0 Core1 CoreN

CacheCacheCache

Memory I/O

Interconnect

...

5

Cache Coherence Problem

What could possibly go wrong?

...
x++
...

...
read x
...
read x
...

Core0 Core1 Core3

I/O

Interconnect

...

6

Coherence Defined

Cache coherence defined...

Informal: Reads return most recently written value

Formal: For concurrent processes P1 and P2

• P writes X before P reads X (with no intervening writes)
 read returns written value

• P1 writes X before P2 reads X
 read returns written value

• P1 writes X and P2 writes X
 all processors see writes in the same order

– all see the same final value for X

7

Snooping

Recall: Snooping for Hardware Cache Coherence

• All caches monitor bus and all other caches

• Bus read: respond if you have dirty data

• Bus write: update/invalidate your copy of data

• In reality: very complicated, lots of corner cases

Core0

Cache

Memory I/O

Interconnect

Snoop

Core1

CacheSnoop

CoreN

CacheSnoop

...

8

Is cache coherence sufficient?

Is cache coherence enough?

P1 P2

… …

x = x +1 x = x + 1

… …

 happens even on single-core
(context switches!)

9

Programs and Processes

10

Processes

How do we cope with lots of activity?

Simplicity? Separation into processes

Reliability? Isolation (e.g. virtual memory)

Speed? Program-level parallelism (e.g. during I/O)

gccemacsnfsd

lpr
lswww

emacs

nfsd lpr

ls wwwOS

OS

11

Process and Program

Process

OS abstraction of a running
computation

• The unit of execution

• The unit of scheduling

• Execution state
+ address space

From process perspective

• a virtual CPU

• some virtual memory

• a virtual keyboard, screen, …

Program

“Blueprint” for a process

• Passive entity (bits on disk)

• Code + static data

12

Role of the OS

Role of the OS

Context Switching

• Provides illusion that every process owns a CPU

Virtual Memory

• Provides illusion that process owns some memory

Device drivers & system calls

• Provides illusion that process owns a keyboard, …

To do:

How to start a process?

How do processes communicate / coordinate?

13

Creating Processes:

Fork

14

How to create a process?

Q: How to create a process? Double click?

After boot, OS starts the first process…

• e.g. init

…which in turn creates other processes

• parent / child the process tree

15

Processes Under UNIX

Init is a special case. For others…

Q: How does parent process create child process?

A: fork() system call

• creates new address space
(Copy-On-Write duplicate of parent’s)

• creates new execution state in OS process table
(Exact copy of parent’s)

• returns child’s id to parent
(context[parent_id]->v0 = child_id)

• returns zero to child
(context[child_id]->v0 = 0)

Wait. what?

• int fork() returns TWICE!

16

Example

main(int ac, char **av) {

int x = getpid(); // get current process ID from OS

char *hi = av[1]; // get greeting from command line

printf(“I’m process %d\n”, x);

int id = fork();

if (id == 0)

printf(“%s from %d\n”, hi, getpid());

else

printf(“%s from %d, child is %d\n”, hi, getpid(), id);

}

$ gcc -o strange strange.c

$./strange “Hi”

I’m process 23511

Hi from 23512

Hi from 23511, child is 23512

17

Inter-process Communication

Parent can pass information to child

• In fact, all parent data is passed to child

• But isolated from then on…

– C-O-W ensures they don’t see each other’s changes

Q: How to continue communicating?

A: Invent OS “IPC channels” : send(msg), recv(), …

A: Shared (Virtual) Memory!

• Before fork: allocate pages, mark as “shared”

• During fork: don’t set copy-on-write for these pages

• After fork: either can read/write

18

Processes and Threads

19

Processes are heavyweight

Parallel programming with processes:

• They share almost everything
code, shared mem, open files, filesystem privileges, …

• Pagetables will be almost identical

• Differences: PC, registers, stack

Recall: process = execution context + address space

20

Processes and Threads

Process

OS abstraction of a running
computation

• The unit of execution

• The unit of scheduling

• Execution state
+ address space

From process perspective

• a virtual CPU

• some virtual memory

• a virtual keyboard, screen, …

Thread

OS abstraction of a single
thread of control

• The unit of scheduling

• Lives in one single process

From thread perspective

• one virtual CPU core on a
virtual multi-core machine

21

Multithreaded Processes

22

Threads

#include <pthread.h>

int counter = 0;

void PrintHello(int arg) {

printf(“I’m thread %d, counter is %d\n”, arg, counter++);

... do some work ...

pthread_exit(NULL);

}

int main () {

for (t = 0; t < 4; t++) {

printf(“in main: creating thread %d\n", t);

pthread_create(NULL, NULL, PrintHello, t);

}

pthread_exit(NULL);

}

23

Threads versus Fork

in main: creating thread 0

I’m thread 0, counter is 0

in main: creating thread 1

I’m thread 0, counter is 0

in main: creating thread 2

in main: creating thread 3

I’m thread 3, counter is 2

I’m thread 2, counter is 3

If processes?

24

Race Conditions

Example: Apache web server

Each client request handled by a separate thread
(in parallel)

• Some shared state: hit counter, ...

(look familiar?)

Timing-dependent failure race condition

• hard to reproduce hard to debug

Thread 52
...
hits = hits + 1;
...

Thread 205
...
hits = hits + 1;
...

Thread 52
read hits
addi
write hits

Thread 205
read hits
addi
write hits

25

Programming with threads

Within a thread: execution is sequential

Between threads?

• No ordering or timing guarantees

• Might even run on different cores at the same time

Problem: hard to program, hard to reason about

• Behavior can depend on subtle timing differences

• Bugs may be impossible to reproduce

Cache coherency isn’t sufficient…

Need explicit synchronization to
make sense of concurrency!

26

Managing Concurrency

Races, Critical Sections, and Mutexes

27

Goals

Concurrency Goals

Liveness

• Make forward progress

Efficiency

• Make good use of resources

Fairness

• Fair allocation of resources between threads

Correctness

• Threads are isolated (except when they aren’t)

28

Race conditions

Race Condition

Timing-dependent error when
accessing shared state

• Depends on scheduling happenstance
… i.e. who wins “race” to the store instruction?

Concurrent Program Correctness =
all possible schedules are safe

• Must consider every possible permutation

• In other words…

… the scheduler is your adversary

29

Critical sections

What if we can designate parts of the execution as
critical sections

• Rule: only one thread can be “inside”

Thread 52

read hits
addi
write hits

Thread 205

read hits
addi
write hits

30

Interrupt Disable

Q: How to implement critical section in code?

A: Lots of approaches….

Disable interrupts?

CSEnter() = disable interrupts (including clock)

CSExit() = re-enable interrupts

Works for many kernel data-structures

• but only within a single core: why?

Very bad idea for user code
(important events are delayed… forever?)

31

Preemption Disable

Q: How to implement critical section in code?

A: Lots of approaches….

Modify OS scheduler?

CSEnter() = syscall to disable context switches

CSExit() = syscall to re-enable context switches

Doesn’t work if interrupts are part of the problem
(e.g. won’t work for many kernel datastructures)

Usually a bad idea anyway
(caller forgets to CSExit? Or waits a long time?)

32

Mutexes

Q: How to implement critical section in code?

A: Lots of approaches….

Mutual Exclusion Lock (mutex)

acquire(m): wait till it becomes free, then take it

release(m): free it

apache_got_hit() {
pthread_mutex_lock(m);
hits = hits + 1;
pthread_mutex_unlock(m)

}

33

Q: How to implement mutexes?

A: next time…

