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Multi-core is a reality…

… but how do we write multi-core safe code?
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Cache Coherence: 

Necessary, but not Sufficient
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Shared Memory Multiprocessors

Shared Memory Multiprocessor (SMP)

• Suppose CPU cores share physical address space

• Assume write-through caches (write-back is worse!)
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Cache Coherence Problem

What could possibly go wrong?

...
x++
...

...
read x
...
read x
...

Core0 Core1 Core3

I/O

Interconnect

...
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Coherence Defined

Cache coherence defined...

Informal: Reads return most recently written value

Formal: For concurrent processes P1 and P2

• P writes X before P reads X (with no intervening writes)
 read returns written value

• P1 writes X before P2 reads X 
 read returns written value

• P1 writes X and P2 writes X
 all processors see writes in the same order

– all see the same final value for X
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Snooping

Recall: Snooping for Hardware Cache Coherence

• All caches monitor bus and all other caches

• Bus read: respond if you have dirty data

• Bus write: update/invalidate your copy of data

• In reality: very complicated, lots of corner cases

Core0

Cache

Memory I/O
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Is cache coherence sufficient?

Is cache coherence enough?

P1 P2

… …

x = x +1 x = x + 1

… …

 happens even on single-core 
(context switches!)
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Programs and Processes
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Processes

How do we cope with lots of activity?

Simplicity? Separation into processes

Reliability? Isolation (e.g. virtual memory)

Speed? Program-level parallelism (e.g. during I/O)
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Process and Program

Process

OS abstraction of a running 
computation

• The unit of execution

• The unit of scheduling

• Execution state
+ address space

From process perspective

• a virtual CPU

• some virtual memory

• a virtual keyboard, screen, …

Program

“Blueprint” for a process

• Passive entity (bits on disk)

• Code + static data
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Role of the OS

Role of the OS

Context Switching

• Provides illusion that every process owns a CPU

Virtual Memory

• Provides illusion that process owns some memory

Device drivers & system calls

• Provides illusion that process owns a keyboard, …

To do: 

How to start a process?

How do processes communicate / coordinate?
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Creating Processes:

Fork
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How to create a process?

Q: How to create a process? Double click?

After boot, OS starts the first process…

• e.g. init

…which in turn creates other processes

• parent / child   the process tree
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Processes Under UNIX

Init is a special case. For others…

Q: How does parent process create child process?

A: fork() system call

• creates new address space
(Copy-On-Write duplicate of parent’s)

• creates new execution state in OS process table
(Exact copy of parent’s)

• returns child’s id to parent
(context[parent_id]->v0 = child_id)

• returns zero to child
(context[child_id]->v0 = 0)

Wait. what?

• int fork() returns TWICE!
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Example

main(int ac, char **av) {

int x = getpid(); // get current process ID from OS

char *hi = av[1]; // get greeting from command line

printf(“I’m process %d\n”, x);

int id = fork();

if (id == 0)

printf(“%s from %d\n”, hi, getpid());

else

printf(“%s from %d, child is %d\n”, hi, getpid(), id);

}

$ gcc -o strange strange.c

$ ./strange “Hi”

I’m process 23511

Hi from 23512

Hi from 23511, child is 23512
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Inter-process Communication

Parent can pass information to child

• In fact, all parent data is passed to child

• But isolated from then on…

– C-O-W ensures they don’t see each other’s changes

Q: How to continue communicating?

A: Invent OS “IPC channels” : send(msg), recv(), …

A: Shared (Virtual) Memory!

• Before fork: allocate pages, mark as “shared”

• During fork: don’t set copy-on-write for these pages

• After fork: either can read/write
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Processes and Threads
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Processes are heavyweight

Parallel programming with processes:

• They share almost everything 
code, shared mem, open files, filesystem privileges, …

• Pagetables will be almost identical

• Differences: PC, registers, stack

Recall: process = execution context + address space
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Processes and Threads

Process

OS abstraction of a running 
computation

• The unit of execution

• The unit of scheduling

• Execution state
+ address space

From process perspective

• a virtual CPU

• some virtual memory

• a virtual keyboard, screen, …

Thread

OS abstraction of a single 
thread of control

• The unit of scheduling

• Lives in one single process

From thread perspective

• one virtual CPU core on a 
virtual multi-core machine
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Multithreaded Processes
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Threads

#include <pthread.h> 

int counter = 0;

void PrintHello(int arg) {

printf(“I’m thread %d, counter is %d\n”, arg, counter++);

... do some work ...

pthread_exit(NULL); 

}

int main () { 

for (t = 0; t < 4; t++) {

printf(“in main: creating thread %d\n", t); 

pthread_create(NULL, NULL, PrintHello, t);

} 

pthread_exit(NULL);

} 
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Threads versus Fork

in main: creating thread 0

I’m thread 0, counter is 0

in main: creating thread 1

I’m thread 0, counter is 0

in main: creating thread 2

in main: creating thread 3

I’m thread 3, counter is 2

I’m thread 2, counter is 3

If processes?
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Race Conditions

Example: Apache web server

Each client request handled by a separate thread 
(in parallel)

• Some shared state: hit counter, ...

(look familiar?)

Timing-dependent failure  race condition

• hard to reproduce  hard to debug

Thread 52
...
hits = hits + 1;
...

Thread 205
...
hits = hits + 1;
...

Thread 52
read hits
addi
write hits

Thread 205
read hits
addi
write hits
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Programming with threads

Within a thread: execution is sequential

Between threads?

• No ordering or timing guarantees

• Might even run on different cores at the same time

Problem: hard to program, hard to reason about

• Behavior can depend on subtle timing differences

• Bugs may be impossible to reproduce

Cache coherency isn’t sufficient…

Need explicit synchronization to 
make sense of concurrency!
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Managing Concurrency

Races, Critical Sections, and Mutexes
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Goals

Concurrency Goals

Liveness

• Make forward progress

Efficiency

• Make good use of resources

Fairness

• Fair allocation of resources between threads

Correctness

• Threads are isolated (except when they aren’t)
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Race conditions

Race Condition

Timing-dependent error when 
accessing  shared state 

• Depends on scheduling happenstance
… i.e. who wins “race” to the store instruction?

Concurrent Program Correctness =
all possible schedules are safe  

• Must consider every possible permutation

• In other words…

… the scheduler is your adversary
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Critical sections

What if we can designate parts of the execution as 
critical sections

• Rule: only one thread can be “inside”

Thread 52

read hits
addi
write hits

Thread 205

read hits
addi
write hits
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Interrupt Disable

Q: How to  implement critical section in code?

A: Lots of approaches….

Disable interrupts?

CSEnter() = disable interrupts (including clock)

CSExit() = re-enable interrupts

Works for many kernel data-structures

• but only within a single core: why?

Very bad idea for user code
(important events are delayed… forever?)
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Preemption Disable

Q: How to  implement critical section in code?

A: Lots of approaches….

Modify OS scheduler?

CSEnter() = syscall to disable context switches

CSExit() = syscall to re-enable context switches

Doesn’t work if interrupts are part of the problem
(e.g. won’t work for many kernel datastructures)

Usually a bad idea anyway
(caller forgets to CSExit? Or waits a long time?)
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Mutexes

Q: How to  implement critical section in code?

A: Lots of approaches….

Mutual Exclusion Lock (mutex)

acquire(m): wait till it becomes free, then take it

release(m): free it

apache_got_hit() {
pthread_mutex_lock(m);
hits = hits + 1;
pthread_mutex_unlock(m)

}
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Q: How to implement mutexes?

A: next time…


