
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Multicore & Parallel Processing

P&H Chapter 4.10-11, 7.1-6

2

Problem Statement

Q: How to improve system performance?

 Increase CPU clock rate?

 But I/O speeds are limited

Disk, Memory, Networks, etc.

Recall: Amdahl’s Law

Solution: Parallelism

3

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Deeper pipeline
– Less work per stage  shorter clock cycle

A: Multiple issue pipeline
– Start multiple instructions per clock cycle in duplicate stages

– Example: 1GHz 4-way multiple-issue

Peak CPI = 0.25  16 billion instructions per second

4

Static Multiple Issue

Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together

• Packages them into “issue slots”

• Simple HW: Compiler detects and avoids hazards

Example: Static Dual-Issue MIPS

• Instructions come in pairs (64-bit aligned)

– One ALU/branch instruction (or nop)

– One load/store instruction (or nop)

5

Scheduling Example

Compiler scheduling for dual-issue MIPS…
TOP: lw $t0, 0($s1) # $t0 = A[i]

lw $t1, 4($s1) # $t1 = A[i+1]
addu $t0, $t0, $s2 # add $s2
addu $t1, $t1, $s2 # add $s2
sw $t0, 0($s1) # store A[i]
sw $t1, 4($s1) # store A[i]
addi $s1, $s1, +8 # increment pointer
bne $s1, $s3, TOP # continue if $s1!=end

ALU/branch slot Load/store slot cycle
TOP: nop lw $t0, 0($s1) 1

addu $s1, $s1, +8 lw $t1, 4($s1) 2
addu $t0, $t0, $s2 nop 3
addu $t1, $t1, $s2 sw $t0, -8($s1) 4
bne $s1, $s3, TOP sw $t1, -4($s1) 5

6

Dynamic Multiple Issue

Dynamic Multiple Issue

a.k.a. SuperScalar Processor

• CPU examines instruction stream and chooses multiple
instructions to issue each cycle

• Compiler can help by reordering instructions….

• … but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution

• Guess results of branches, loads, etc.

• Execute instructions as early as possible

• Roll back if guesses were wrong

• Don’t commit results until all previous insts. are retired

7

Does Multiple Issue Work?

Q: Does multiple issue / ILP work?

A: Kind of… but not as much as we’d like

Limiting factors?

• Programs dependencies

• Hard to detect dependencies  be conservative

– e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;

• Hard to expose parallelism

– Can only issue a few instructions ahead of PC

• Structural limits

– Memory delays and limited bandwidth

• Hard to keep pipelines full

8

Power Efficiency

Q: Does multiple issue / ILP cost much?

A: Yes.

 Dynamic issue and speculation requires power
CPU Year Clock

Rate

Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Multiple simpler cores may be better?

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

9

Moore’s Law

486

286

8088

8080
80084004

386

Pentium

AtomP4

Itanium 2
K8

K10

Dual-core Itanium 2

10

Why Multicore?

Moore’s law

• A law about transistors

• Smaller means more transistors per die

• And smaller means faster too

But: Power consumption growing too…

11

Power Limits

12

Power Wall

Power = capacitance * voltage2 * frequency

In practice: Power ~ voltage3

Reducing voltage helps (a lot)

... so does reducing clock speed

Better cooling helps

The power wall

• We can’t reduce voltage further

• We can’t remove more heat

13

Why Multicore?

Power
1.0x

1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

1.6x

1.02x

Dual-Core
Underclocked -20%

14

Inside the Processor

AMD Barcelona: 4 processor cores

15

Parallel Programming

Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

Multicore difficulties

• Partitioning work

• Coordination & synchronization

• Communications overhead

• Balancing load over cores

• How do you write parallel programs?

– ... without knowing exact underlying architecture?

16

Work Partitioning

Partition work so all cores have something to do

17

Load Balancing

Load Balancing

Need to partition so all cores are actually working

18

Amdahl’s Law

If tasks have a serial part and a parallel part…

Example:

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results

Recall: Amdahl’s Law

As number of cores increases …

• time to execute parallel part?

• time to execute serial part?

19

Amdahl’s Law

