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Problem Statement

Q: How to improve system performance?

 Increase CPU clock rate?

 But I/O speeds are limited

Disk, Memory, Networks, etc.

Recall: Amdahl’s Law

Solution: Parallelism
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Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Deeper pipeline
– Less work per stage  shorter clock cycle

A: Multiple issue pipeline
– Start multiple instructions per clock cycle in duplicate stages

– Example: 1GHz 4-way multiple-issue

Peak CPI = 0.25   16 billion instructions per second
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Static Multiple Issue

Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together

• Packages them into “issue slots”

• Simple HW: Compiler detects and avoids hazards

Example: Static Dual-Issue MIPS

• Instructions come in pairs (64-bit aligned)

– One ALU/branch instruction (or nop)

– One load/store instruction (or nop)
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Scheduling Example

Compiler scheduling for dual-issue MIPS…
TOP: lw   $t0, 0($s1)     # $t0 = A[i]

lw   $t1, 4($s1) # $t1 = A[i+1]
addu $t0, $t0, $s2   # add $s2
addu $t1, $t1, $s2   # add $s2
sw   $t0, 0($s1)     # store A[i]
sw   $t1, 4($s1)     # store A[i]
addi $s1, $s1, +8  # increment pointer
bne $s1, $s3, TOP # continue if $s1!=end

ALU/branch slot Load/store slot cycle
TOP: nop lw $t0, 0($s1) 1

addu $s1, $s1, +8 lw   $t1, 4($s1) 2
addu $t0, $t0, $s2 nop 3
addu $t1, $t1, $s2 sw   $t0, -8($s1) 4
bne $s1, $s3, TOP sw   $t1, -4($s1) 5
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Dynamic Multiple Issue

Dynamic Multiple Issue

a.k.a. SuperScalar Processor

• CPU examines instruction stream and chooses multiple 
instructions to issue each cycle

• Compiler can help by reordering instructions….

• … but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution

• Guess results of branches, loads, etc.

• Execute instructions as early as possible

• Roll back if guesses were wrong

• Don’t commit results until all previous insts. are retired



7

Does Multiple Issue Work?

Q: Does multiple issue / ILP work?

A: Kind of… but not as much as we’d like

Limiting factors?

• Programs dependencies

• Hard to detect dependencies  be conservative

– e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;

• Hard to expose parallelism

– Can only issue a few instructions ahead of PC

• Structural limits

– Memory delays and limited bandwidth

• Hard to keep pipelines full
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Power Efficiency

Q: Does multiple issue / ILP cost much?

A: Yes.

 Dynamic issue and speculation requires power
CPU Year Clock 

Rate

Pipeline 

Stages

Issue 

width

Out-of-order/ 

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Multiple simpler cores may be better?

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W
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Moore’s Law

486

286

8088

8080
80084004

386

Pentium

AtomP4

Itanium 2
K8

K10

Dual-core Itanium 2
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Why Multicore?

Moore’s law

• A law about transistors

• Smaller means more transistors per die

• And smaller means faster too

But: Power consumption growing too…
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Power Limits
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Power Wall

Power = capacitance * voltage2 * frequency 

In practice: Power ~ voltage3

Reducing voltage helps (a lot)

... so does reducing clock speed

Better cooling helps

The power wall

• We can’t reduce voltage further

• We can’t remove more heat
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Why Multicore? 

Power
1.0x

1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

1.6x

1.02x

Dual-Core
Underclocked -20%
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Inside the Processor

AMD Barcelona: 4 processor cores
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Parallel Programming

Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

Multicore difficulties

• Partitioning work

• Coordination & synchronization

• Communications overhead

• Balancing load over cores

• How do you write parallel programs?

– ... without knowing exact underlying architecture?
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Work Partitioning

Partition work so all cores have something to do
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Load Balancing

Load Balancing

Need to partition so all cores are actually working
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Amdahl’s Law

If tasks have a serial part and a parallel part…

Example: 

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results

Recall: Amdahl’s Law

As number of cores increases …

• time to execute parallel part? 

• time to execute serial part? 
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Amdahl’s Law


