
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

I/O

See: P&H Chapter 6.5-6

2

Computer System Organization

Computer System =

2

Input +
Output +
Memory +
Datapath +
Control

CPU

Registers

NetworkVideo

bus

Memory

bus

Disk

USB

Audio

Keyboard Mouse

Serial

3

Challenge

How do we interface to other devices
• Keyboard

• Mouse

• Disk

• Network

• Display

• Programmable Timer (for clock ticks)

• Audio

• Printer

• Camera

• iPod

• Scanner

• …

4

Interconnects

Bad Idea #1: Put all devices on one interconnect

• We would have to replace all devices as we
improve/change the interconnect

• keyboard speed == main memory speed ?!

CPU NetworkVideo

Memory Disk Audio

Keyboard

Serial

Cache

interconnect

5

I/O Controllers

Decouple via I/O Controllers and “Bridges”
• fast/expensive busses when needed; slow/cheap elsewhere

• I/O controllers to connect end devices

6

Interconnecting Components

Interconnects are (were?) busses

• parallel set of wires for data and control

• shared channel
– multiple senders/receivers

– everyone can see all bus transactions

• bus protocol: rules for using the bus wires

Alternative (and increasingly common):

• dedicated point-to-point channels

7

Bus Parameters

Width = number of wires

Transfer size = data words per bus transaction

Synchronous (with a bus clock)
or asynchronous (no bus clock / “self clocking”)

8

Bus Types

Processor – Memory (“Front Side Bus”)

• Short, fast, & wide

• Mostly fixed topology, designed as a “chipset”

– CPU + Caches + Interconnect + Memory Controller

I/O and Peripheral busses (PCI, SCSI, USB, LPC, …)

• Longer, slower, & narrower

• Flexible topology, multiple/varied connections

• Interoperability standards for devices

• Connect to processor-memory bus through a bridge

9

Typical x86 PC I/O System

10

I/O Device API

Typical I/O Device API

• a set of read-only or read/write registers

Command registers

• writing causes device to do something

Status registers

• reading indicates what device is doing, error codes, …

Data registers

• Write: transfer data to a device

• Read: transfer data from a device

11

Simple (old) example: AT Keyboard Device

8-bit Status:

8-bit Cmd:
0xAA = “self test”
0xAE = “enable kbd”
0xED = “set LEDs”

…

8-bit Data:
scancode (when reading)
LED state (when writing) or …

PE TO AUXB LOCK AL2 SYSF IBS OBS

12

Communication Interface

Q: How does program OS code talk to device?

A: special instructions to talk over special busses

Programmed I/O

• inb $a, 0x64

• outb $a, 0x60

• Specifies: device, data, direction

• Protection: only allowed in kernel mode

*x86: $a implicit; also inw, outw, inh, outh, …

13

Communication Interface

Q: How does program OS code talk to device?

A: special instructions to talk over special busses

Programmed I/O

• inb $a, 0x64

• outb $a, 0x60

• Specifies: device, data, direction

• Protection: only allowed in kernel mode

*x86: $a implicit; also inw, outw, inh, outh, …

14

Communication Interface

Q: How does program OS code talk to device?

A: Map registers into virtual address space

Memory-mapped I/O

• Accesses to certain addresses redirected to I/O devices

• Data goes over the memory bus

• Protection: via bits in pagetable entries

• OS+MMU+devices configure mappings

15

Memory-Mapped I/O

Keyboard
Registers

Video
Registers &

Memory

Audio
Registers

Physical
Address

Space

RAM

Virtual
Address

Space

16

Device Drivers

Programmed I/O

char read_kbd()

{

do {

sleep();

status = inb(0x64);

} while (!(status & 1));

return inb(0x60);

}

Memory Mapped I/O
struct kbd {

char status, pad[3];

char data, pad[3];

};

kbd *k = mmap(...);

char read_kbd()

{

do {

sleep();

status = k->status;

} while (!(status & 1));

return k->data;

}

17

Communication Method

Q: How does program learn device is ready/done?

A: Polling: Periodically check I/O status register

• If device ready, do operation

• If device done, …

• If error, take action

Pro? Con?

• Predictable timing & inexpensive

• But: wastes CPU cycles if nothing to do

• Efficient if there is always work to do

Common in small, cheap, or real-time embedded systems

Sometimes for very active devices too…

18

Communication Method

Q: How does program learn device is ready/done?

A: Interrupts: Device sends interrupt to CPU

• Cause identifies the interrupting device

• interrupt handler examines device, decides what to do

Priority interrupts

• Urgent events can interrupt lower-priority interrupt
handling

• OS can disable defer interrupts

19

Typical x86 PC I/O System

20

I/O Data Transfer

How to talk to device?
Programmed I/O or Memory-Mapped I/O

How to get events?
Polling or Interrupts

How to transfer lots of data?

disk->cmd = READ_4K_SECTOR;

disk->data = 12;

while (!(disk->status & 1) { }

for (i = 0..4k)

buf[i] = disk->data;

21

DMA: Direct Memory Access

Programmed I/O xfer: Device  CPU  RAM

for (i = 1 .. n)

• CPU issues read request

• Device puts data on bus
& CPU reads into registers

• CPU writes data to memory

CPU RAM

DISK

22

I/O Data Transfer

Q: How to transfer lots of data efficiently?

A: Have device access memory directly

Direct memory access (DMA)

• OS provides starting address, length

• controller (or device) transfers data autonomously

• Interrupt on completion / error

23

DMA: Direct Memory Access

Programmed I/O xfer: Device  CPU  RAM

for (i = 1 .. n)

• CPU issues read request

• Device puts data on bus
& CPU reads into registers

• CPU writes data to memory

DMA xfer: Device  RAM

• CPU sets up DMA request

• for (i = 1 ... n)
Device puts data on bus
& RAM accepts it

CPU RAM

DISK

CPU RAM

DISK

24

DMA Example

DMA example: reading from audio (mic) input

• DMA engine on audio device… or I/O controller … or …

int dma_size = 4*PAGE_SIZE;

void *buf = alloc_dma(dma_size);

...

dev->mic_dma_baseaddr = (int)buf;

dev->mic_dma_count = dma_len;

dev->cmd = DEV_MIC_INPUT |
DEV_INTERRUPT_ENABLE | DEV_DMA_ENABLE;

25

DMA Issues (1): Addressing

Issue #1: DMA meets Virtual Memory

RAM: physical addresses

Programs: virtual addresses

Solution: DMA uses physical addresses

• OS uses physical address when setting up DMA

• OS allocates contiguous physical pages for DMA

• Or: OS splits xfer into page-sized chunks

(many devices support DMA “chains” for this reason)

CPU RAM

DISK

MMU

26

DMA Example

DMA example: reading from audio (mic) input

• DMA engine on audio device… or I/O controller … or …

int dma_size = 4*PAGE_SIZE;

void *buf = alloc_dma(dma_size);

...

dev->mic_dma_baseaddr = virt_to_phys(buf);

dev->mic_dma_count = dma_len;

dev->cmd = DEV_MIC_INPUT |
DEV_INTERRUPT_ENABLE | DEV_DMA_ENABLE;

27

DMA Issues (1): Addressing

Issue #1: DMA meets Virtual Memory

RAM: physical addresses

Programs: virtual addresses

Solution 2: DMA uses virtual addresses

• OS sets up mappings on a mini-TLB

CPU RAM

DISK

MMU

uTLB

28

DMA Issues (2): Virtual Mem

Issue #2: DMA meets Paged Virtual Memory

DMA destination page
may get swapped out

Solution: Pin the page before initiating DMA

Alternate solution: Bounce Buffer

• DMA to a pinned kernel page, then memcpy elsewhere

CPU RAM

DISK

29

DMA Issues (4): Caches

Issue #4: DMA meets Caching

DMA-related data could
be cached in L1/L2

• DMA to Mem: cache is now stale

• DMA from Mem: dev gets stale data

Solution: (software enforced coherence)

• OS flushes some/all cache before DMA begins

• Or: don't touch pages during DMA

• Or: mark pages as uncacheable in page table entries

– (needed for Memory Mapped I/O too!)

CPU RAM

DISK

L2

30

DMA Issues (4): Caches

Issue #4: DMA meets Caching

DMA-related data could
be cached in L1/L2

• DMA to Mem: cache is now stale

• DMA from Mem: dev gets stale data

Solution 2: (hardware coherence aka snooping)

• cache listens on bus, and conspires with RAM

• Dma to Mem: invalidate/update data seen on bus

• DMA from mem: cache services request if possible,
otherwise RAM services

CPU RAM

DISK

L2

31

I/O Summary

How to talk to device?
Programmed I/O or Memory-Mapped I/O

How to get events?
Polling or Interrupts

How to transfer lots of data?
DMA

