
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Traps, Exceptions, System Calls,
& Privileged Mode

P&H Chapter 4.9, pages 509–515, appendix B.7

2

Operating Systems

3

Control Transfers

Control Transfers to OS

Case 1: Program invokes OS

• eg: sbrk(), mmap(), sleep()

• Like a function call: invoke, do stuff, return results

Attempt #1: OS as a library

• Just a function call: JAL sbrk

• Standard calling conventions

4

VM Hardware/Software Boundary

Virtual to physical address translation

Hardware (typical):
• Traverse PageTables on TLB miss, install TLB entries

• Update dirty bit in PTE when evicting

• Flush when PTBR changes

Software (typical):
• Decide when to do context switches, update PTBR

• Decide when to add, remove, modify PTEs and PDEs
– and invoke MMU to invalidate TLB entries

• Handle page faults: swap to/from disk, kill processes

Hardware (minimal):
• Notify OS on TLB miss; software does everything else

5

Control Transfers

Control Transfers to OS

Case 1: Program invokes OS
• eg: sbrk(), mmap(), sleep()

• Like a function call: invoke, do stuff, return results

Case 2: Hardware invokes OS on behalf of program
• Page fault, divide by zero, arithmetic overflow, …

• OS takes corrective action; then restarts/kills program

Can CPU simply fake this:
a0 = cause
JAL exception_handler

6

Attempt #2: OS as a library + Exception handler

Attempt #2: OS as a library + Exception Handler

Program invokes OS: regular calling convention

HW invokes OS:

• New registers: EPC, Cause, Vector*, …

• On exception, CPU does…
EPC PC
Cause  error/reason code
PC  Vector

• Code at Vector does…
take corrective action based on Cause
return to EPC

* x86: via IDTR register and IDT; MIPS used a constant

7

Sketch of Exception Handler

MIPS exception vector is 0x80000180
.ktext 0x80000180
EPC has offending PC, Cause has errcode
(step 1) save *everything* but $k0, $k1
lui $k0, 0xB000
sw $1, 0($k0)
sw $2, 4($k0)
sw $3, 8($k0)
sw $4, 12($k0)
…
sw $31, 120($k0)
mflo $1
sw $1, 124($k0)
mfhi $1
sw $1, 128($k0)
…

* approximate

8

Sketch of Exception Handler

MIPS exception vector is 0x80000180
.ktext 0x80000180
EPC has offending PC, Cause has errcode
(step 1) save *everything* but $k0, $k1
(step 2) set up a usable OS context
li $sp, 0xFFFFFF00
li $fp, 0xFFFFFFFF
li $gp, …

* approximate

9

Sketch of Exception Handler

MIPS exception vector is 0x80000180
.ktext 0x80000180
EPC has offending PC, Cause has errcode
(step 1) save *everything* but $k0, $k1
(step 2) set up a usable OS context
(step 3) examine Cause register, and take corrective action
mfc0 $t0, Cause # move-from-coprocessor-0
if ($t0 == PAGE_FAULT) {
mfc0 $a0, BadVAddr # another dedicated register
jal kernel_handle_pagefault

} else if ($t0 == PROTECTION_FAULT) {
…

} else if ($t0 == DIV_BY_ZERO) {
…

}

* approximate

10

Sketch of Exception Handler

MIPS exception vector is 0x80000180
.ktext 0x80000180
EPC has offending PC, Cause has errcode
(step 1) save *everything* but $k0, $k1
(step 2) set up a usable OS context
(step 3) examine Cause register, and take corrective action
(step 4) restore registers and return to where program left off

lui $k0, 0xB000

lw $1, 0($k0)

lw $2, 4($k0)

lw $3, 8($k0)

…

lw $31, 120($k0)

…

mfc0 $k1, EPC
jr $k1

* approximate

11

Hardware/Software Boundary

Hardware Support:

• registers: EPC, Cause, Vector, BadVAddr, …

• instructions: mfc0, TLB flush/invalidate, cache flush, …

Hardware guarantees for precise exceptions:

• EPC points at offending instruction

• Earlier instructions are finished

• EPC and later instructions have not started

• Returning to EPC will pick up where we left off

12

Double Faults, Triple Faults

• EPC points at offending inst
• Earlier inst are finished; EPC and later inst not started
• Returning to EPC will pick up where we left off

What could possibly go wrong?
Exception happens during exception handler…

original EPC and Cause are lost

• Disable exceptions until current exception is resolved?

– MIPS: Status register has a bit for enable/disable

– turn exceptions back on just when returning to EPC

– works for issues that can be (temporarily) ignored

• Use a “double fault” exception handler for rest

– BSOD

• And if that faults? Triple fault  instant shutdown

13

Precise Exceptions

• EPC points at offending inst
• Earlier inst are finished; EPC and later inst not started
• Returning to EPC will pick up where we left off

What could possibly go wrong?
Multiple simultaneous exceptions in pipeline

lw $4, 0($0) # page fault

xxx $4, $5, $5 # illegal instruction

add $2, $2, $3 # overflow

• need stalls to let earlier inst raise exception first

• even worse with speculative / “out-of-order” execution

14

Precise Exceptions

• EPC points at offending inst
• Earlier inst are finished; EPC and later inst not started
• Returning to EPC will pick up where we left off

What could possibly go wrong?
Exception happened in delay slot

jal prints

lw $4, 0($0) # page fault

…

• need more than just EPC to identify “where we left off”

15

Precise Exceptions

• EPC points at offending inst
• Earlier inst are finished; EPC and later inst not started
• Returning to EPC will pick up where we left off

What could possibly go wrong?
Instructions with multiple faults or side effects

store-and-update-register

memory-to-memory-copy

memory-fill, x86 “string” prefix, x86 “loop” prefix

• need more than just EPC to identify “where we left off”

• or: try to undo effects that have already happened

• or: have software try to finish the partially finished EPC

• or: all of the above

16

“The interaction between branch delay slots and
exception handling is extremely unpleasant and
you'll be happier if you don't think about it.”

– Matt Welch

17

Attempt #2: Recap

Attempt #2: Recap

Program invokes OS

• regular calling convention

HW invokes OS:

• precise exceptions vector to OS exception handler

Drawbacks?

18

Attempt #2 is broken

Drawbacks:

• Any program can muck with TLB, PageTables, OS code…

• A program can intercept exceptions of other programs

• OS can crash if program messes up $sp, $fp, $gp, …

Wrong: Make these instructions and registers
available only to “OS Code”

• “OS Code” == any code above 0x80000000

• Program can still JAL into middle of OS functions

• Program can still muck with OS memory, pagetables, …

19

Privileged Mode

aka Kernel Mode

20

Operating System

Some things not available to untrusted programs:

• Exception registers, HALT instruction, MMU
instructions, talk to I/O devices, OS memory, ...

Need trusted mediator: Operating System (OS)

• Safe control transfer

• Data isolation

P1 P2 P3 P4

VM filesystem net

driver driver

disk ethMMU

21

Privilege Mode

CPU Mode Bit / Privilege Level Status Register

Mode 0 = untrusted = user domain
• “Privileged” instructions and registers are disabled by CPU

Mode 1 = trusted = kernel domain
• All instructions and registers are enabled

Boot sequence:
• load first sector of disk (containing OS code) to well known address in

memory

• Mode  1; PC  well known address

OS takes over…
• initialize devices, MMU, timers, etc.

• loads programs from disk, sets up pagetables, etc.

• Mode  0; PC  program entry point

(note: x86 has 4 levels x 3 dimensions, but nobody uses any but the 2 extremes)

22

Privilege Mode

CPU Mode Bit / Privilege Level Status Register

Mode 0 = untrusted = user domain
• “Privileged” instructions and registers are disabled by CPU

Mode 1 = trusted = kernel domain
• All instructions and registers are enabled

Boot sequence:
• load first sector of disk (containing OS code) to well known address in

memory

• Mode  1; PC  well known address

OS takes over…
• initialize devices, MMU, timers, etc.

• loads programs from disk, sets up pagetables, etc.

• Mode  0; PC  program entry point

(note: x86 has 4 levels x 3 dimensions, but nobody uses any but the 2 extremes)

23

Terminology

Trap: Any kind of a control transfer to the OS

Syscall: Synchronous (planned), program-to-kernel transfer

• SYSCALL instruction in MIPS (various on x86)

Exception: Asynchronous, program-to-kernel transfer

• exceptional events: div by zero, page fault, page protection err, …

Interrupt: Aysnchronous, device-initiated transfer

• e.g. Network packet arrived, keyboard event, timer ticks

* real mechanisms, but nobody agrees on these terms

24

Sample System Calls

System call examples:

putc(): Print character to screen

• Need to multiplex screen between competing programs

send(): Send a packet on the network

• Need to manipulate the internals of a device

sbrk(): Allocate a page

• Needs to update page tables & MMU

sleep(): put current prog to sleep, wake other

• Need to update page table base register

25

System Calls

System call: Not just a function call

• Don’t let program jump just anywhere in OS code

• OS can’t trust program’s registers (sp, fp, gp, etc.)

SYSCALL instruction: safe transfer of control to OS

• Mode  0; Cause  syscall; PC  exception vector

MIPS system call convention:

• user program mostly normal (save temps, save ra, …)

• but: $v0 = system call number

26

Invoking System Calls

int getc() {

asm("addiu $2, $0, 4");

asm("syscall");

}

char *gets(char *buf) {

while (...) {

buf[i] = getc();

}

}

27

Libraries and Wrappers

Compilers do not emit SYSCALL instructions

• Compiler doesn’t know OS interface

Libraries implement standard API from system API

libc (standard C library):

• getc()  syscall

• sbrk()  syscall

• write()  syscall

• gets()  getc()

• printf()  write()

• malloc()  sbrk()

• …

28

Protection Boundaries

user

kernel

29

Where does OS live?

Kernel code and data lives above 0x80000000

In same virtual address space as user process?

• but… user code can modify kernel code and data!

30

Where does OS live?

Kernel code and data lives above 0x80000000

In its own address space?

• all traps switch to a different address space [expensive]

• prints(“hi”) syscall is tricky [why?]

31

Where does OS live?

Kernel code and data lives above 0x80000000

Solution

• map kernel code/data into all processes at same vaddr

• but use supervisor=1 protection bit on PTEs

• VM hardware enforces user/kernel isolation

32

Interrupts

33

Recap: Traps

Map kernel into every process using supervisor PTEs

 Switch to kernel mode on trap, user mode on return

Syscall: Synchronous, program-to-kernel transfer

• user does caller-saves, invokes kernel via syscall

• kernel handles request, puts result in v0, and returns

Exception: Asynchronous, program-to-kernel transfer

• user div/load/store/… faults, CPU invokes kernel

• kernel saves everything, handles fault, restores, and returns

Interrupt: Aysnchronous, device-initiated transfer

• e.g. Network packet arrived, keyboard event, timer ticks

• kernel saves everything, handles event, restores, and returns

34

Example: Clock Interrupt

Example: Clock Interrupt*

• Every N cycles, CPU causes exception with Cause = CLOCK_TICK

• OS can select N to get e.g. 1000 TICKs per second

.ktext 0x80000180

(step 1) save *everything* but $k0, $k1 to 0xB0000000

(step 2) set up a usable OS context

(step 3) examine Cause register, take action

if (Cause == PAGE_FAULT) handle_pfault(BadVaddr)

else if (Cause == SYSCALL) dispatch_syscall($v0)

else if (Cause == CLOCK_TICK) schedule()

(step 4) restore registers and return to where program left off

* not the CPU clock, but a programmable timer clock

35

Scheduler

struct regs context[];

int ptbr[];

schedule() {

i = current_process;

j = pick_some_process();

if (i != j) {

current_process = j;

memcpy(context[i], 0xB0000000);

memcpy(0xB0000000, context[j]);

asm(“mtc0 Context, ptbr[j]”);

}

}

36

Syscall vs. Interrupt

Syscall vs. Exceptions vs. Interrupts

Same mechanisms, but…

Syscall saves and restores much less state

Others save and restore full processor state

Interrupt arrival is unrelated to user code

