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Performance

Virtual Memory Summary

PageTable for each process:

• 4MB contiguous in physical memory, or multi-level, …

• every load/store translated to physical addresses

• page table miss = page fault
load the swapped-out page and retry instruction,
or kill program if the page really doesn’t exist,
or tell the program it made a mistake
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Page Table Review

x86 Example: 2 level page tables, assume…
32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages

Q:How many bits for a page number?
A: 20

Q: What is stored in each PageTableEntry?

A: ppn, valid/dirty/r/w/x/…

Q: What is stored in each PageDirEntry?

A: ppn, valid/?/…

Q: How many entries in a PageDirectory?

A: 1024 four-byte PDEs

Q: How many entires in each PageTable?

A: 1024 four-byte PTEs
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Page Table Example

x86 Example: 2 level page tables, assume…
32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages
PTBR = 0x10005000 (physical)

Write to virtual address 0x7192a44c…
Q: Byte offset in page?              PT Index?               PD Index?

(1) PageDir is at 0x10005000, so…
Fetch PDE from physical address 0x1005000+4*PDI

• suppose we get {0x12345, v=1, …}

(2) PageTable is at 0x12345000, so…
Fetch PTE from physical address 0x12345000+4*PTI

• suppose we get {0x14817, v=1, d=0, r=1, w=1, x=0, …}

(3) Page is at 0x14817000, so…
Write data to physical address 0x1481744c
Also: update PTE with d=1
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Performance

Virtual Memory Summary

PageTable for each process:

• 4MB contiguous in physical memory, or multi-level, …

• every load/store translated to physical addresses

• page table miss: load a swapped-out page and retry 
instruction, or kill program

Performance?

• terrible: memory is already slow
translation makes it slower

Solution?

• A cache, of course
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Making Virtual Memory Fast

The Translation Lookaside Buffer (TLB)
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Translation Lookaside Buffer (TLB)

Hardware Translation Lookaside Buffer (TLB)

A small, very fast cache of recent address mappings

• TLB hit: avoids PageTable lookup

• TLB miss: do PageTable lookup, cache result for later



8

TLB Diagram
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0 0
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A TLB in the Memory Hierarchy

(1) Check TLB for vaddr (~ 1 cycle)

(2) TLB Miss: traverse PageTables for vaddr

(3a) PageTable has valid entry for in-memory page

• Load PageTable entry into TLB; try again (tens of cycles)

(3b) PageTable has entry for swapped-out (on-disk) page

• Page Fault: load from disk, fix PageTable, try again (millions of cycles)

(3c) PageTable has invalid entry

• Page Fault: kill process

CPU
TLB

Lookup
Cache

Mem Disk

PageTable
Lookup

(2) TLB Hit

• compute paddr, send to cache
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TLB Coherency

TLB Coherency: What can go wrong?

A: PageTable or PageDir contents change

• swapping/paging activity, new shared pages, …

A: Page Table Base Register changes

• context switch between processes
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Translation Lookaside Buffers (TLBs)

When PTE changes, PDE changes, PTBR changes….

Full Transparency: TLB coherency in hardware

• Flush TLB whenever PTBR register changes 
[easy – why?]

• Invalidate entries whenever PTE or PDE changes 
[hard – why?]

TLB coherency in software

If TLB has a no-write policy…

• OS invalidates entry after OS modifies page tables

• OS flushes TLB whenever OS does context switch
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TLB Parameters

TLB parameters (typical)

• very small (64 – 256 entries), so very fast

• fully associative, or at least set associative

• tiny block size: why?

Intel Nehalem TLB (example)

• 128-entry L1 Instruction TLB, 4-way LRU

• 64-entry L1 Data TLB, 4-way LRU

• 512-entry L2 Unified TLB, 4-way LRU
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Virtual Memory meets Caching

Virtually vs. physically addressed caches

Virtually vs. physically tagged caches
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Virtually Addressed Caching

Q: Can we remove the TLB from the critical path?

A: Virtually-Addressed Caches

CPU
TLB

Lookup

Virtually
Addressed

Cache

Mem Disk
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Virtual vs. Physical Caches

CPU

Cache

SRAM
Memory

DRAM

addr

data

MMU

Cache

SRAM
MMU

CPU
Memory

DRAM

addr

data

Cache works on physical addresses

Cache works on virtual addresses

Q: What happens on context switch?
Q: What about virtual memory aliasing?
Q: So what’s wrong with physically addressed caches?
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Indexing vs. Tagging

Physically-Addressed Cache
• slow: requires TLB (and maybe PageTable) lookup first

Virtually-Indexed, Virtually Tagged Cache
• fast: start TLB lookup before cache lookup finishes

• PageTable changes (paging, context switch, etc.)
 need to purge stale cache lines (how?)

• Synonyms (two virtual mappings for one physical page)
 could end up in cache twice (very bad!)

Virtually-Indexed, Physically Tagged Cache
• ~fast: TLB lookup in parallel with cache lookup

• PageTable changes  no problem: phys. tag mismatch

• Synonyms  search and evict lines with same phys. tag

Virtually-Addressed Cache
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Typical Cache Setup

CPU
L2 Cache

SRAM

Memory

DRAM

addr

data

MMU

Typical L1: On-chip virtually addressed, physically tagged

Typical L2: On-chip physically addressed

Typical L3: On-chip … 

L1 Cache

SRAM
TLB SRAM
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Caches/TLBs/VM

Caches, Virtual Memory, & TLBs

Where can block be placed?

• Direct, n-way, fully associative

What block is replaced on miss?

• LRU, Random, LFU, … 

How are writes handled?

• No-write (w/ or w/o automatic invalidation)

• Write-back (fast, block at time)

• Write-through (simple, reason about consistency)
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Summary of Cache Design Parameters

L1 Paged Memory TLB

Size 

(blocks)

1/4k to 4k 16k to 1M 64 to 4k

Size 

(kB)

16 to 64 1M to 4G 2 to 16

Block 

size (B)

16-64 4k to 64k 4-32

Miss 

rates

2%-5% 10-4 to 10-5% 0.01% to 2%

Miss 

penalty

10-25 10M-100M 100-1000


