
Kevin Walsh
CS 3410, Spring 2010

Computer Science
Cornell University

Virtual Memory 2

P & H Chapter 5.4-5

2

Performance

Virtual Memory Summary

PageTable for each process:

• 4MB contiguous in physical memory, or multi-level, …

• every load/store translated to physical addresses

• page table miss = page fault
load the swapped-out page and retry instruction,
or kill program if the page really doesn’t exist,
or tell the program it made a mistake

3

Page Table Review

x86 Example: 2 level page tables, assume…
32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages

Q:How many bits for a page number?
A: 20

Q: What is stored in each PageTableEntry?

A: ppn, valid/dirty/r/w/x/…

Q: What is stored in each PageDirEntry?

A: ppn, valid/?/…

Q: How many entries in a PageDirectory?

A: 1024 four-byte PDEs

Q: How many entires in each PageTable?

A: 1024 four-byte PTEs

PDE

PTBR
PDE
PDE

PDE

PTE
PTE
PTE

PTE

4

Page Table Example

x86 Example: 2 level page tables, assume…
32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages
PTBR = 0x10005000 (physical)

Write to virtual address 0x7192a44c…
Q: Byte offset in page? PT Index? PD Index?

(1) PageDir is at 0x10005000, so…
Fetch PDE from physical address 0x1005000+4*PDI

• suppose we get {0x12345, v=1, …}

(2) PageTable is at 0x12345000, so…
Fetch PTE from physical address 0x12345000+4*PTI

• suppose we get {0x14817, v=1, d=0, r=1, w=1, x=0, …}

(3) Page is at 0x14817000, so…
Write data to physical address 0x1481744c
Also: update PTE with d=1

PDE

PTBR
PDE
PDE

PDE

PTE
PTE
PTE

PTE

5

Performance

Virtual Memory Summary

PageTable for each process:

• 4MB contiguous in physical memory, or multi-level, …

• every load/store translated to physical addresses

• page table miss: load a swapped-out page and retry
instruction, or kill program

Performance?

• terrible: memory is already slow
translation makes it slower

Solution?

• A cache, of course

6

Making Virtual Memory Fast

The Translation Lookaside Buffer (TLB)

7

Translation Lookaside Buffer (TLB)

Hardware Translation Lookaside Buffer (TLB)

A small, very fast cache of recent address mappings

• TLB hit: avoids PageTable lookup

• TLB miss: do PageTable lookup, cache result for later

8

TLB Diagram

V R W X D
0 invalid
1 0
0 invalid
0 invalid
1 0
0 0
1 1
0 invalid

V R W X D tag ppn

V
0 invalid
0 invalid
0 invalid
1
0 invalid
1
1
0 invalid

9

A TLB in the Memory Hierarchy

(1) Check TLB for vaddr (~ 1 cycle)

(2) TLB Miss: traverse PageTables for vaddr

(3a) PageTable has valid entry for in-memory page

• Load PageTable entry into TLB; try again (tens of cycles)

(3b) PageTable has entry for swapped-out (on-disk) page

• Page Fault: load from disk, fix PageTable, try again (millions of cycles)

(3c) PageTable has invalid entry

• Page Fault: kill process

CPU
TLB

Lookup
Cache

Mem Disk

PageTable
Lookup

(2) TLB Hit

• compute paddr, send to cache

10

TLB Coherency

TLB Coherency: What can go wrong?

A: PageTable or PageDir contents change

• swapping/paging activity, new shared pages, …

A: Page Table Base Register changes

• context switch between processes

11

Translation Lookaside Buffers (TLBs)

When PTE changes, PDE changes, PTBR changes….

Full Transparency: TLB coherency in hardware

• Flush TLB whenever PTBR register changes
[easy – why?]

• Invalidate entries whenever PTE or PDE changes
[hard – why?]

TLB coherency in software

If TLB has a no-write policy…

• OS invalidates entry after OS modifies page tables

• OS flushes TLB whenever OS does context switch

12

TLB Parameters

TLB parameters (typical)

• very small (64 – 256 entries), so very fast

• fully associative, or at least set associative

• tiny block size: why?

Intel Nehalem TLB (example)

• 128-entry L1 Instruction TLB, 4-way LRU

• 64-entry L1 Data TLB, 4-way LRU

• 512-entry L2 Unified TLB, 4-way LRU

13

Virtual Memory meets Caching

Virtually vs. physically addressed caches

Virtually vs. physically tagged caches

14

Virtually Addressed Caching

Q: Can we remove the TLB from the critical path?

A: Virtually-Addressed Caches

CPU
TLB

Lookup

Virtually
Addressed

Cache

Mem Disk

PageTable
Lookup

15

Virtual vs. Physical Caches

CPU

Cache

SRAM
Memory

DRAM

addr

data

MMU

Cache

SRAM
MMU

CPU
Memory

DRAM

addr

data

Cache works on physical addresses

Cache works on virtual addresses

Q: What happens on context switch?
Q: What about virtual memory aliasing?
Q: So what’s wrong with physically addressed caches?

16

Indexing vs. Tagging

Physically-Addressed Cache
• slow: requires TLB (and maybe PageTable) lookup first

Virtually-Indexed, Virtually Tagged Cache
• fast: start TLB lookup before cache lookup finishes

• PageTable changes (paging, context switch, etc.)
 need to purge stale cache lines (how?)

• Synonyms (two virtual mappings for one physical page)
 could end up in cache twice (very bad!)

Virtually-Indexed, Physically Tagged Cache
• ~fast: TLB lookup in parallel with cache lookup

• PageTable changes  no problem: phys. tag mismatch

• Synonyms  search and evict lines with same phys. tag

Virtually-Addressed Cache

17

Typical Cache Setup

CPU
L2 Cache

SRAM

Memory

DRAM

addr

data

MMU

Typical L1: On-chip virtually addressed, physically tagged

Typical L2: On-chip physically addressed

Typical L3: On-chip …

L1 Cache

SRAM
TLB SRAM

18

Caches/TLBs/VM

Caches, Virtual Memory, & TLBs

Where can block be placed?

• Direct, n-way, fully associative

What block is replaced on miss?

• LRU, Random, LFU, …

How are writes handled?

• No-write (w/ or w/o automatic invalidation)

• Write-back (fast, block at time)

• Write-through (simple, reason about consistency)

19

Summary of Cache Design Parameters

L1 Paged Memory TLB

Size

(blocks)

1/4k to 4k 16k to 1M 64 to 4k

Size

(kB)

16 to 64 1M to 4G 2 to 16

Block

size (B)

16-64 4k to 64k 4-32

Miss

rates

2%-5% 10-4 to 10-5% 0.01% to 2%

Miss

penalty

10-25 10M-100M 100-1000

