Virtual Memory 2

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

P & H Chapter 5.4-5

Virtual Memory Summary

PageTable for each process:

4MB contiguous in physical memory, or multi-level, ...

every load/store translated to physical addresses

page table miss = page fault

load the swapped-out page and retry instruction,
or kill program if the page really doesn’t exist,

or tell the program it made a mistake

x86 Example: 2 level page tables, assume...
32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages

PTBR

Q:How many bits for a page number?
A: 20

Q: What is stored in each PageTableEntry?
A: ppn, valid/dirty/r/w/x/...

Q: What is stored in each PageDirEntry?
A: ppn, valid/?/...

Q: How many entries in a PageDirectory?
A: 1024 four-byte PDEs

Q: How many entires in each PageTable?
A: 1024 four-byte PTEs

PDE

PTE

PDE

PDE

PTE

PDE

PTE

PTE

Page Table Review

x86 Example: 2 level page tables, assume...

32 bit vaddr, 32 bit paddr P
4k PDir, 4k PTables, 4k Pages STER SoF
PTBR = 0x10005000 (physical) Egg EE
Write to virtual address 0x7192a44c... PTE
Q: Byte offset in page? PT Index? PD Index?

(1) PageDir is at 0x10005000, so...
Fetch PDE from physical address 0x1005000+4*PDI

e suppose we get {0x12345, v=1, ...}

(2) PageTable is at 0x12345000, so...
Fetch PTE from physical address 0x12345000+4*PTI

e suppose we get {0x14817, v=1, d=0, r=1, w=1, x=0, ...}
(3) Page is at 0x14817000, so...

Write data to physical address 0x1481744c
Also: update PTE with d=1

Page Table Example

Virtual Memory Summary
PageTable for each process:

* 4MB contiguous in physical memory, or multi-level, ...

* every load/store translated to physical addresses

* page table miss: load a swapped-out page and retry
instruction, or kill program

Performance?

* terrible: memory is already slow
translation makes it slower

Solution?

e A cache, of course

Making Virtual Memory Fast
The Translation Lookaside Buffer (TLB)

Translation Lookaside Buffer (TLB)

Hardware Translation Lookaside Buffer (TLB)

A small, very fast cache of recent address mappings
e TLB hit: avoids PageTable lookup
* TLB miss: do PageTable lookup, cache result for later

TLB Diagram

VRWXD tag ppn

VRWXD
0 invalid | —"
v — 1 0| e
0 invalid : .
- - 0 invalid
0 invalid : -
- - 0 invalid
0 invalid 1 0 . S
1 1 —
1 : :
. 0 invalid \K/
o
0 mvalh}l\ y

CPU

TLB
Lookup

Cache

PageTable
Lookup

(1) Check TLB for vaddr (~ 1 cycle)

(2) TLB Miss: traverse PageTables for vaddr

Mem

(2) TLB Hit

ATLB in the Memory Hierarchy

e compute paddr, send to cache

(3a) PageTable has valid entry for in-memory page

* Load PageTable entry into TLB; try again (tens of cycles)

(3b) PageTable has entry for swapped-out (on-disk) page

* Page Fault: load from disk, fix PageTable, try again (millions of cycles)

(3c) PageTable has invalid entry

* Page Fault: kill process

TLB Coherenc Y

TLB Coherency: What can go wrong?

A: PageTable or PageDir contents change

e swapping/paging activity, new shared pages, ...

A: Page Table Base Register changes
e context switch between processes

10

Translation Lookaside Buffers (TLBs)

When PTE changes, PDE changes, PTBR changes....

Full Transparency: TLB coherency in hardware

* Flush TLB whenever PTBR register changes
‘easy — why?]

* |Invalidate entries whenever PTE or PDE changes
‘hard — why?]

TLB coherency in software

If TLB has a no-write policy...
* OSinvalidates entry after OS modifies page tables
* OS flushes TLB whenever OS does context switch

11

TLB Parameters

TLB parameters (typical)
e very small (64 — 256 entries), so very fast
 fully associative, or at least set associative
* tiny block size: why?

Intel Nehalem TLB (example)
 128-entry L1 Instruction TLB, 4-way LRU
* 64-entry L1 Data TLB, 4-way LRU
e 512-entry L2 Unified TLB, 4-way LRU

12

Virtual Memory meets Caching
Virtually vs. physically addressed caches
Virtually vs. physically tagged caches

13

Virtually Addressed Caching

Q: Can we remove the TLB from the critical path?
A: Virtually-Addressed Caches

CPU

Mem

TLB
Lookup
Virtually PageTable
Addressed Lookup

Cache

14

Virtual vs. Physical Caches

addr Cach
by, VMU ache >
I:::::)

CPU m SRAM Memory
) DRAM
Cache works on physical addresses
addr
—| Cache | VMU I:
CPU m SRAM [¢> Memory
DRAM
Cache works on virtual addresses

Q: What happens on context switch?
Q: What about virtual memory aliasing?

Q: So what’s wrong with physically addressed caches?

15

Indexing vs. Tagging

Physically-Addressed Cache

* slow: requires TLB (and maybe PageTable) lookup first

Virtually-Addressed Cache

 fast: start TLB lookup before cache lookup finishes

e PageTable changes (paging, context switch, etc.)
- need to purge stale cache lines (how?)

* Synonyms (two virtual mappings for one physical page)
— could end up in cache twice (very bad!)
Virtually-Indexed, Physically Tagged Cache
e ~fast: TLB lookup in parallel with cache lookup
* PageTable changes =2 no problem: phys. tag mismatch
* Synonyms =2 search and evict lines with same phys. tag

16

Typical Cache Setup

CPU
addr
L1 Cache |[™> —
MMU |
SRAM data

Memory
L2 Cache ,
SRAM [¢&=> DRAM

TLB SRAM

Typical L1: On-chip virtually addressed, physically tagged
Typical L2: On-chip physically addressed

Typical L3: On-chip ...

17

Caches/TLBs/VM

Caches, Virtual Memory, & TLBs
Where can block be placed?

* Direct, n-way, fully associative

What block is replaced on miss?
e LRU, Random, LFU, ...

How are writes handled?
* No-write (w/ or w/o automatic invalidation)
* Write-back (fast, block at time)
e Write-through (simple, reason about consistency)

18

L1 Paged Memory |TLB
Size 1/4k to 4k | 16k to 1M 64 to 4k
(blocks)
Size 16to 64 |1Mto 4G 210 16
(kB)
Block 16-64 4k to 64k 4-32
size (B)
Miss 2%-5% |104to 10°% 0.01% to 2%
rates
Miss 10-25 10M-100M 100-1000

penalty

19

