Virtual Memory 1

Kevin Walsh
CS 3410, Spring 2010
Computer Science
Cornell University

P & H Chapter 5.4 (up to TLBs)

CPU address/data bus...
... routed through caches

... to main memory
e Simple, fast, but...

Q: What happens for LW/SW
to an invalid location?

e 0x000000000 (NULL)
* uninitialized pointer

CPU

Stack

L.

Heap

Data

Text

Memory

Multiple Processes

Running multiple processes...
Time-multiplex a single CPU core (multi-tasking)

* Web browser, skype, office, ... all must co-exist

Many cores per processor (multi-core)
or many processors (multi-processor)

* Multiple programs run simultaneously

Multiple Processors

Q: What happens when another program is
executed concurrently on another processor?

o i P,
Take turns using memory: CPU
| Stack
| Hea
CPU i
| Data
| Text

Memory

Can we relocate second program?

 What if they don’t fit?
 What if not contiguous?
* Need to recompile/relink?

CPU

CPU

Solutio

n? Multiple processes/processors

Stack

Data

Stack

Heap

Heap

Data

Text

Text

Memory

All problems in computer science can be solved by
another level of indirection.

— David Wheeler

— or, Butler Lampson
— or, Leslie Lamport
— or, Steve Bellovin

Virtual Memory

Virtual Memory: A Solution for All Problems

Each process has its own virtual address space

* Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access
 all access is indirect through a virtual address
* translate fake virtual address to a real physical address
* redirect load/store to the physical address

Address Spaces

Virtual address space Physical address space

Ox 00000000
Ox 00010000
text Ox 00000000
0x10000000 \
\
data _—
l,.l' ;r.rl_.l'-l_
L K == = —
r"rf "-.I
S ;rf_:“"f.j ..-"'!:
A I_..-"::,o’f
' Ox00fFHE
stack
| page belonging to process
Ox T " | page not belonging to process wikipedia

CPU CPU

v v

O|m|>

NI|<[|>X

MMU > “— MMU

=< |IN|IO]I1>X

Programs load/store to virtual addresses
Actual memory uses physical addresses

Memory Management Unit (MMU)
* Responsible for translating on the fly

e Essentially, just a big array of integers:
paddr = PageTable[vaddr];

Address Space

Virtual Memory Advantages

Advantages

Easy relocation

* Loader puts code anywhere in physical memory

* Creates virtual mappings to give illusion of correct layout
Higher memory utilization

* Provide illusion of contiguous memory

* Use all physical memory, even physical address 0x0
Easy sharing

 Different mappings for different programs / cores

And more to come...

10

Address Translation
Pages, Page Tables, and
the Memory Management Unit (MMU)

11

Address Translation

Attempt #1: How does MMU translate addresses?
paddr = PageTable[vaddr];

Granularity?
* Per word...
* Per block...
* Variable...

Typical:
* 4KB — 16KB pages
e 4MB - 256MB jumbo pages

12

Virtual page number

Page Offset

¥

[Lookup in PageTable]

¥

Physical page number

Page offset

Attempt #1: For any access to virtual address:

e Calculate virtual page number and page offset

* Lookup physical page number at PageTable[vpn]

e Calculate physical address as ppn:offset

Address Translation

vaddr

paddr

13

Data CPU |==p

Read Mem[0x00201538]

MMU

Q: Where to store page tables?

A: In memory, of course...

Special page table base register

(CR3:PTBR on x86)

(Cop0:ContextRegister on MIPS)

* lies to children

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

Simple PageTable

14

Physical Page
Number

0x10045

OxC20A3

O0x4123B ¢

0x00000 &

0x20340 @

vpn pgoff

vaddr

* lies to children

mmmmm

PTBR

15

Page Size Example

Overhead for VM Attempt #1 (example)

Virtual address space (for each process):
 total memory: 23? bytes = 4GB
* page size: 212 bytes = 4KB
e entries in PageTable?
* size of PageTable?

Physical address space:

 total memory: 2%° bytes = 512MB
e overhead for 10 processes?

* lies to children 6

Invalid Pages

Physical Page

Vv Number
0 0xC20A3000
1 0x10045
0]
0]
1 0xC20A3 0x90000000
1 0Ox4123B
1 0)'(0]0]0]0]0;
0]
0x4123B000
Cool Trick #1: Don’t map all pages
Need valid bit for each 0x10045000
page table entry
Q: Why? 0x00000000

17

Assume most of PageTable is empty

Beyond Flat Page Tables

How to translate addresses? Multi-level PageTable

10 bits 10 bits 10 bits 2 | vaddr
—> Word
PTEntry —>
Page
>| PDEntry
Page Table
PTBR —>)
Page Directory

* x86 does exactly this

18

Physical Page
RW X Number

0x10045

OxC20A3
Ox41238B
0x00000

\Y
0
1
0
0
1
1
1
0

Cool Trick #2: Page permissions!

Keep R, W, X permission bits for
each page table entry

Q: Why?

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

19

Physical Page
RW X Number

OxC20A3

OxC20A3
Ox41238B
0x00000

\Y
0
1
0
0
1
1
1
0

Cool Trick #3: Aliasing

Map the same physical page
at several virtual addresses

Q: Why?

0xC20A3000

0x90000000

0x4123B000

0x10045000

0x00000000

iasin

20

Paging

21

Paging

Can we run process larger than physical memory?

* The “virtual” in “virtual memory”

View memory as a “cache” for secondary storage
 Swap memory pages out to disk when not in use
* Page them back in when needed

Assumes Temporal/Spatial Locality
e Pages used recently most likely to be used again soon

22

Paging

Physical Page

VRWXD_ __ Number 0xC20A3000

0) invalid

1 0 0x10045

0 invalid

0 - valid 0x90000000

0 0| disk sector 200 Ox4173B000

0 O| disk sector 25

1 1 0x00000

0 invalid 0x10045000
Cool Trick #4: Paging/Swapping 0x00000000

Need more bits: C
200

Dirty, RecentlyUsed, ...

25

23

Role of the Operating System
Context switches, working set,

shared memory

24

Suppose Firefox needs a new page of memory
(1) Invoke the Operating System

void *sbrk(int nbytes);
(2) OS finds a free page of physical memory

 clear the page (fill with zeros)
* add a new entry to Firefox’s PageTable

25

sbrk

Context Switch

Suppose Firefox is idle, but Skype wants to run

(1) Firefox invokes the Operating System
int sleep(int nseconds);

(2) OS saves Firefox’s registers, load skype’s
* (more on this later)

(3) OS changes the CPU’s Page Table Base Register
* CopO:ContextRegister / CR3:PDBR

(4) OS returns to Skype

26

Shared Memory

Suppose Firefox and Skype want to share data
(1) OS finds a free page of physical memory

 clear the page (fill with zeros)
* add a new entry to Firefox’s PageTable

* add a new entry to Skype’s PageTable
— can be same or different vaddr
— can be same or different page permissions

27

Multiplexing

Suppose Skype needs a new page of memory, but Firefox is
hogging it all

(1) Invoke the Operating System
void *sbrk(int nbytes);
(2) OS can’t find a free page of physical memory
* Pick a page from Firefox instead (or other process)

(3) If page table entry has dirty bit set...
* Copy the page contents to disk

(4) Mark Firefox’s page table entry as “on disk”

* Firefox will fault if it tries to access the page

(5) Give the newly freed physical page to Skype
e clear the page (fill with zeros)
* add a new entry to Skyps’s PageTable

28

Paging Assumption 1

OS multiplexes physical memory among processes

* assumption # 1:
processes use only a few pages at a time

e working set = set of process’s recently actively pages

H recent
accesses

0x00000000 0x90000000

29

P1

working set

swapped

Reasons for Thrashing

mem

disk

Q: What if working set is too large?

Case 1: Single process using too many pages

working set swapped
mem disk
Case 2: Too many processes
ws || ws ||ws]|| ws || ws || ws
mem disk

30

Thrashing

Thrashing b/c working set of process (or processes)
greater than physical memory available

— Firefox steals page from Skype
— Skype steals page from Firefox

 |/O (disk activity) at 100% utilization
— But no useful work is getting done

|deal: Size of disk, speed of memory (or cache)
Non-ideal: Speed of disk

31

Paging Assumption 2

OS multiplexes physical memory among processes

* assumption # 2:
recent accesses predict future accesses

e working set usually changes slowly over time

working set

time >

32

More Thrashing

Q: What if working set changes rapidly or
unpredictably?

.I'-Il..__-'_. |.|. :_.-
.:ll'.l-'__- --il
T e Nl

time —

working set

A: Thrashing b/c recent accesses don’t predict
future accesses

33

Preventing Thrashing

How to prevent thrashing?
e User: Don’t run too many apps
* Process: efficient and predictable mem usage

e OS: Don’t over-commit memory, memory-aware
scheduling policies, etc.

34

